Процентное содержание углеводов в клетке. Основная функция - энергетическая

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Роль углеводов в клетке

  • 1. Клетка 3
  • 2. Состав клетки 3
  • 3. Углеводы 5
  • 4. Функции углеводов 7
  • 5. Роль углеводов в клетке 7
  • Список литературы 10
  • 1. Клетка
  • Современная клеточная теория состоит из следующих обобщений.
  • Клетка - это элементарная частица жизни. Проявление жизни возможно только на уровне не ниже клеточного.
  • Клетки всех живых существ имеют единый план строения. Он включает в себя цитоплазму с различными органеллами и мембрану. Функциональную основу любой клетки составляют белки и нуклеиновые кислоты.
  • Клетка происходит только от клетки (Р. Вирхов, 1858) в результате деления.
  • Клетки многоклеточных организмов отличаются деталями строения, что вызвано выполнением ими различных функций. Клетки, имеющие общее происхождение, строение и выполняющие одинаковые функции в организме, образуют ткань (нервная, мышечная, покровная). Ткани образуют различные органы.
  • 2. Состав клетки
  • В состав любой клетки входят более 60 элементов периодической таблицы Менделеева. По частоте встречаемости элементы можно поделить на три группы:
  • Основные элементы. Это углерод (С), водород (Н), азот (N), кислород (О). Их содержание в клетке превышает 97%. Они входят в состав всех органических веществ (белков, жиров, углеводов, нуклеиновых кислот) и составляют их основу.
  • Макроэлементы. К ним относятся железо (Fe), сера (S), кальций (Ca), калий (K), натрий (Na), фосфор (P), хлор (Cl). На долю макроэлементов приходится около 2%. Они входят в состав многих органических и неорганических веществ.
  • Микроэлементы. Имеют самое большое разнообразие (их более 50-ти), но в клетке даже взятые все вместе они не превышают 1%. Микроэлементы в чрезвычайно малых количествах входят в состав многих ферментов, гормонов или специфичных тканей, но определяют их свойства. Так, фтор (F), входит в состав зубной эмали, укрепляя ее.
  • Йод (I) участвует в строении гормона щитовидной железы тироксина, магний (Mg) входит в состав хлорофилла растительной клетки, медь (Cu) и селен (Se) встречаются в ферментах, защищающих клетки от мутаций, цинк (Zn) связан с процессами памяти.
  • Все элементы клетки входят в состав различных молекул, образуют вещества, которые делятся на два класса: неорганические и органические.
  • Органические вещества клетки представлены различными биохимическими полимерами, то есть такими молекулами, которые состоят из многочисленных повторений более простых, сходных по структуре участков (мономеров). Органическими составляющими клетки являются углеводы, жиры и жироподобные вещества, белки и аминокислоты, нуклеиновые кислоты и нуклеиновые основания.
  • К углеводам относятся органические вещества, имеющие общую химическую формулу C n (H 2 O) n . По строению углеводы делят на моносахара, олигосахара и полисахара. Моносахара представляют собой молекулы в виде одного кольца, включающего, как правило, пять или шесть атомов углерода. Пятиуглеродные сахара - рибоза, дезоксирибоза. Шестиуглеродные сахара - глюкоза, фруктоза, галактоза. Олигосахара - это результат объединения небольшого числа моносахаров (дисахара, трисахара и т.п.) наиболее распространенными являются, например, тростниковый (свекловичный) сахар - сахароза, состоящая из двух молекул глюкозы и фруктозы; солодовый сахар - мальтоза, образованная двумя молекулами глюкозы; молочный сахар - лактоза, образован молекулой галактозы и молекулой глюкозы.
  • Полисахара - крахмал, гликоген, целлюлоза, состоят из огромного количества моносахаров, связанных между собой в более или менее разветвленные цепи.
  • 3. Углеводы
  • Углеводы - органические вещества, с общей формулой Cn(H2O)m.
  • В животной клетке углеводы находятся в количествах не превышающих 5% . Наиболее богаты углеводами растительные клетки, где их содержание достигает до 90% сухой массы(картофель, семена и т.д.)
  • Углеводы делят на простые (моносахариды и дисахариды) и сложные (полисахариды).
  • Моносахариды - такие вещества, как глюкоза, пентоза, фруктоза, рибоза. дисахариды - сахар, сахароза (состоит из глюкозы и фруктозы.
    • Полисахариды - образованны многими моносахаридами. Мономерами таких полисахаридов, как крахмал, гликоген, целлюлоза является глюкоза.
    • Углеводы играют роль основного источника энергии в клетке. в процессе окисления 1 г углеводов освободждается 17,6 кДж. Крахмал у растений и гликоген у животных, откладывается в клетках, служат энергетическим резервом.
    • Углеводы - это органические соединения, в состав которых входят водород (Н), углерод (С) и кислород (О), причем количество атомов водорода в большинстве случаев вдвое превышает число атомов кислорода. Общая формула углеводов: Cn(H2O)n, где n не меньше трех. Углеводы образуются из воды (Н2О) и углекислого газа (СО2) в процессе фотосинтеза, происходящего в хлоропластах зеленых растений (у бактерий в процессе бактериального фотосинтеза или хемосинтеза). Обычно в клетке животных организмов содержится около 1 % углеводов (в клетках печени до 5 %), а в растительных клетках до 90 % (в клубнях картофеля).
    • Все углеводы подразделяют на 3 группы:
    • Моносахариды чаще содержат пять (пентозы) или шесть (гексозы) атомов углерода, столько же кислорода и вдвое больше водорода (например, глюкоза - С6Н12О6). Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ. Гексозы (фруктоза и глюкоза) постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус. Глюкоза содержится в крови и служит источником энергии для клеток и тканей животных;
    • Дисахариды объединяют в одной молекуле два моносахарида. Пищевой сахар (сахароза) состоит из молекул глюкозы и фруктозы, молочный сахар (лактоза) включает глюкозу и галактозу.
    • Все моно- и дисахариды хорошо растворимы в воде и имеют сладкий вкус.
    • Полисахариды (крахмал, клетчатка, гликоген, хитин) образованы десятками и сотнями мономерных единиц, которыми являются молекулы глюкозы. Полисахариды практически нерастворимы в воде и не обладают сладким вкусом. Основные полисахариды - крахмал (в растительных клетках) и гликоген (в клетках животных) откладываются в виде включений и служат запасными энергетическими веществами.
    • 4. Функции углеводов
    • Углеводы выполняют две основные функции: энергетическую и строительную. Например, целлюлоза образует стенки растительных клеток (клетчатка), хитин - главный структурный компонент наружного скелета членистоногих.
    • Углеводы выполняют следующие функции:
    • - они являются источником энергии (при распаде 1 г глюкозы освобождается 17,6 кДж энергии);
    • - выполняют строительную (структурную) функцию (целлюлозная оболочка в растительных клетках, хитин в скелете насекомых и в стенке клеток грибов);
    • - запасают питательные вещества (крахмал в растительных клетках, гликоген - в животных);
    • - являются составными частями ДНК, РНК и АТФ.
    • 5. Роль углеводов в клетке
    • Энергетическая. Моно - и олигосахара являются важным источником энергии для любой клетки. Расщепляясь, они выделяют энергию, которая запасается в виде молекул АТФ, которые используется во многих процессах жизнедеятельности клетки и всего организма. Конечными продуктами расщепления всех углеводов являются углекислый газ и вода.
    • Запасательная. Моно- и олигосахара благодаря своей растворимости быстро усваиваются клеткой, легко мигрируют по организму, поэтому непригодны для длительного хранения. Роль запаса энергии играют огромные нерастворимые в воде молекулы полисахаров. У растений, например, это - крахмал, а у животных и грибов - гликоген. Для использования этих запасов организм должен сначала превратить полисахара в моносахара.
    • Строительная. Подавляющее большинство растительных клеток имеют плотные стенки из целлюлозы, обеспечивающей растениям прочность, упругость и защиту от большой потери влаги.
    • Структурная. Моносахара могут соединяться с жирами, белками и другими веществами. Например, рибоза входит в состав всех молекул РНК, а дезоксирибоза - в ДНК.
    • Источниками углеводов в питании служат главным образом продукты растительного происхождения - хлеб, крупы, картофель, овощи, фрукты, ягоды. Из продуктов животного происхождения углеводы содержаться в молоке (молочный сахар). Пищевые продукты содержат различные углеводы. Крупы, картофель содержат крахмал - сложное вещество (сложный углевод), нерастворимое в воде, но расщепляющееся под действием пищеварительных соков на более простые сахара. Во фруктах, ягодах и некоторых овощах углеводы содержаться в виде различных более простых сахаров - фруктовый сахар, свекловичный сахар, тростниковый сахар, виноградный сахар (глюкоза) и др. Эти вещества растворимы в воде и хорошо усваиваются в организме. Растворимые в воде сахара быстро всасываются в кровь. Целесообразно вводить не все углеводы в виде сахаров, а основную их массу вводить в виде крахмала, которым богат, например, картофель. Это способствует постепенной доставке сахара тканям. Непосредственно в виде сахара рекомендуется вводить лишь 20-25% от общего количества углеродов, содержащихся в суточном рационе питания. В это число входит и сахар, содержащийся в сладостях, кондитерских изделиях, фруктах и ягодах.
    • Если углеводы поступают с пищей в достаточном количестве, они откладываются главным образом в печени и мышцах в виде особого животного крахмала - гликогена. В дальнейшем запас гликогена расщепляется в организме до глюкозы и, поступая в кровь и другие ткани, используются для нужд организма. При избыточном же питании углеводы переходят в организме в жир. К углеводам обычно относят и клетчатку (оболочку растительных клеток), которая мало используется организмом человека, но необходима для правильных процессов пищеварения.

    Список литературы

    1. Химия, пер. с англ., 2 изд., М., 1956; Химия углеводов, М., 1967

    2. Степаненко Б.Н., Углеводы. Успехи в изучении строения и метаболизма, М., 1968

    4. Алабин В. Г., Скрежко А. Д. Питание и здоровье. - Минск, 1994

    5. Сотник Ж.Г., Заричанская Л.А. Белки, жиры и углеводы. - М., Приор, 2000

Подобные документы

    Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.

    реферат , добавлен 13.12.2007

    Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация , добавлен 04.04.2012

    Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация , добавлен 28.11.2013

    Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа , добавлен 12.11.2014

    Понятие и классификация углеводов, основные функции в организме. Краткая характеристика эколого-биологической роли. Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки. Наследственные нарушения обмена моносахаридов и дисахаридов.

    контрольная работа , добавлен 03.12.2014

    Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.

    доклад , добавлен 30.04.2010

    Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация , добавлен 11.04.2013

    Понятие, сущность, значение, источники и роль углеводов. Применение углеводов в медицине: при парентеральном питании, при диетическом питании. Сущность фруктозы. Общая характеристика химической структуры клетчатки.

    реферат , добавлен 13.12.2008

    Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат , добавлен 06.07.2010

    Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой C n (H 2 O) m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С 5 Н 10 О 4) отличается от рибозы (С 5 Н 10 О 5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С 6 Н 12 О 6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

  1. один из самых распространенных моносахаридов,
  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
  3. мономер многих олигосахаридов и полисахаридов,
  4. необходимый компонент крови.

Фруктоза, или фруктовый сахар , относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной .

Сахароза, или тростниковый, или свекловичный сахар , — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар ). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар , — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар , — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2-8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С 6 Н 10 О 5) n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С 6 Н 10 О 5) n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

(С 6 Н 10 О 5) n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

Функции углеводов

Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (-СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок -СН 2 -. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (-СН=СН-), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Функции липидов

Функция Примеры и пояснения
Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.

Защитная Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

Теплоизоляционная Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
Регуляторная Гиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.

Источник метаболической воды При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
Каталитическая Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

    Перейти к лекции №1 «Введение. Химические элементы клетки. Вода и другие неорганические соединения»

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Что из еды лично вас делает счастливыми? Дайте-ка угадаю: легкий фруктово-йогуртовый тортик с ароматным чаем или воздушное Рафаэлло, подаренное любимым? А может вы из тех, кто любит полакомиться утренней овсяной кашей с горстью сухофруктов, а поужинать дорогой итальянской пастой с морепродуктами под сыром? Если где-то вы узнали себя, то однозначно данная статья будет для вас полезной, так как говорить мы сегодня будем о ваших любимых продуктах, а точнее – одной категории продуктов, которая именуется УГЛЕВОДЫ. Конечно, вы уже «продвинутые» в вопросах правильного питания и многое уже знаете, но, как говорится, «повторение – мать учение». Сегодня мы более подробно рассмотрим, что такое простые и сложные углеводы ; какие функции выполняют углеводы в нашем организме, и для чего они нам вообще нужны; какие углеводы при похудении предпочтительней употреблять и почему? Очень надеюсь, что после прочтений данной статьи многие из вас пересмотрят свой рацион и поймут, что чрезмерное потребление углеводов, так же как и недостаточное, может стать причиной многих проблем со здоровьем.

Ну что ж а я предлагаю начать с основ и выяснить, что такое углеводы, и какие функции они несут для человека?

Углеводы и их функции

Углеводы – это обширный класс органических соединений, которые являются основным источником энергии для многих живых организмов на планете, в том числе и для человека. Источниками углеводов является в основном растительная пища (злаки, растения, овощи и фрукты), так как именно растения участвуют в процессах фотосинтеза, во время которого и образуются углеводы, но в небольших количествах углеводы так же содержаться и в белковых продуктах – рыбе, мясе и молочных продуктах.

Итак, какие же функции выполняют углеводы в организме человека?

Перечислять все функции я не буду, назову только основные, которые представляют для нас наибольший интерес.

  1. Конечно же, это энергетическая функция . При потреблении 1 г углеводов выделяется 4 ккал энергии.
  2. Запасающая – углеводы могут храниться в организме человека в виде гликогена и при подходящих условиях использовать его в качестве энергии (см. п. 1)
  3. Защитная – находясь в печени, углеводы помогают ей нейтрализовать ядовитые и токсичные вещества, попавшие в организм извне.
  4. Пластическая – входят в состав молекул, а также хранятся в виде запасов питательных веществ.
  5. Регуляторная – регулируют осмотическое давление крови.
  6. Антидепрессивная – углеводы способны вызывать выброс серотонина – гормона хорошего настроения.

Недостаток углеводов: последствия

Для тех, кто занимается спортом, главной функцией является энергетическая. Именно благодаря ей мы можем быть активными, можем после тяжелого рабочего дня пойти в зал, отзаниматься там час-полтора, а потом еще прийти домой и приготовить ужин на всю семью. Если бы в нашем рационе не было углеводов, то все люди ходили бы как зомби, еле передвигая ногами, но при этом были бы злые, как собаки, готовые в любой момент накинуться на первую попавшуюся жертву и растерзать ее на кусочки. Если вы когда-либо сидела на или придерживались , то, наверняка, понимаете, о чем я говорю. В те дни, когда углеводы в рационе составляют менее 15% от суточной нормы БЖУ (в среднем это <60-50 г углеводов в день), в организме человека начинают происходить удивительные вещи:

— настроение падает «ниже плинтуса»;
— появляется вялость и усталость во всем теле;
— падает продуктивность;
— снижаются энергетические ресурсы человека;
— замедляются умственные и мыслительные процессы;
— у одних наблюдается сонливое меланхоличное настроение, а у других наоборот – агрессивное и нервозное.

Все эти признаки являются последствиями недостаточного потребления углеводов. Если вы никогда не ощущали на себе эти последствия, значит а) вы никогда не худели, используя экстремальные виды диет (что очень хорошо) и б) вы едите углеводы столько, сколько хотите, и не паритесь по поводу своего веса. Если вы отнесли себя к б-категории , значит, скорее всего, в вашем рационе питания присутствует такая проблема, как ПЕРЕИЗБЫТОК УГЛЕВОДОВ. И сейчас мы более подробно остановимся на этом вопросе.

Куда запасаются углеводы?

Думаю, сейчас ни для кого ни секрет, что с углеводами при похудении нужно быть крайне осторожными, они могут сильно тормозить процесс жиросжигания за счет своей уникальной способности откладываться про запас в виде жира. Дело в том, что любая поступающая в наш организм пища, должна быть переработана и усвоена, а выделяемая при этом энергия должна пойти на энергетические затраты организма. Если вы употребили за один прием слишком много еды, то большая ее часть пойдет в жировое депо. Если говорить об углеводах, то всего 5% углеводов сожжется на текущие нужды организма (на питание клеток энергией, работу мозга, сердца и других органов и систем), еще 5% запасется в виде гликогена в печени и мышечной ткани, а остальные 90% пойдут в ЖИР! И поверьте, запасание и простых, и сложных углеводов по такой схеме происходит КАЖДЫЙ РАЗ, когда вы сидите перед компьютером и пьете чай с конфетами либо в 10 часов вечера решили поужинать гречкой с молоком.

В этот момент ваш организм не нуждается в энергии, а значит, и сжигание калорий не будет происходить! А зачем? – ведь вы ровно сидите на стуле, затрачивая минимальное количество энергии на этот процесс. Выходит, что вашему организму некуда тратить энергию, полученную от углеводов… Остаётся один выход – направить все полученные углеводы в жировое депо на хранение до «лучших» времен.

 Небольшой экскурс в историю

Ранее у наших давних предков не было такого изобилия рафинированных углеводов в виде изделий из муки, промышленных кондитерских изделий, сахаросодержащих продуктов и других источников быстрых углеводов, а потребление крахмалосодержащих продуктов таких, как картофель, бобовые и крупы составляли незначительную часть их ежедневного рациона. Основой питания первых людей был в основном животный белок, а чуть позже с развитием собирательства рацион обогатился корнеплодами, растениями и ягодами. К чему я это все рассказываю? А к тому, что наш организм мало изменился с того времени, и наши потребности в простых и сложных углеводах остались такими же, как и миллионы лет назад. Да, люди стали более развитыми по сравнению с первобытными людьми каменного века, это факт, но потребности организма в углеводах не выросли, а наоборот СНИЗИЛИСЬ по причине более сидячего и менее активного образа жизни.

Но кто об этом задумывается? Думаю таких людей немного. А все потому, что на каждом шагу, в каждом магазине и ларьке на нас смотрят распрекрасные углеводики в виде разнообразных вкусняшек – как же можно перед ними устоять???

Переизбыток углеводов: последствия

Главная функция углеводов – это давать нам энергию, с помощью которой мы можем вести нормальный активный образ жизни. Но когда в рационе человека углеводов становится чересчур много, вот тут и начинаются проблемы, основные из которых:

— лишний вес/ожирение;
— нарушение углеводного обмена в организме;
— развитие атеросклероза;
— заболевания желудочно-кишечного тракта: диарея, нарушение всасывания питательных веществ, дисбактериоз, дисбиоз кишечника, развитие патогенной микрофлоры в кишечнике и др.)
— метаболические и гормональные нарушения: нарушения сна, частые головные боли, раздражительность, быстрая утомляемость, ухудшение памяти и др.
— ослабление иммунной системы;
— развитие резистентности (нечувствительности) к инсулину, что может стать причиной развития сахарного диабета.

Это далеко не все негативные последствия от переизбытка углеводов, их НАМНОООГО больше, и все они могут проявиться в любой момент, если вы не прекратите потреблять углеводную пищу в больших количествах.

Конечно, мало кто думает о заболеваниях кишечника или нарушении сна, когда ест свой любимый десерт, это очевидно. Большинство людей, пока они не столкнулись с каким-то серьезным заболеванием лицом к лицу и обязательно уже в острой форме, никто и не подумает заранее побеспокоиться о своем здоровье и пересмотреть свой рацион питания, такая уж наша сущность, к сожалению…

Но какие же оптимальные нормы потребления простых и сложных углеводов ? Раз мало углеводов – это плохо, и много – это тоже плохо, то как найти эту «золотую середину», когда всем будет хорошо?

Простые и сложные углеводы

Когда мы говорим об углеводах, то нужно понимать, что существует два вида углеводов – это простые и сложные углеводы. Главное их отличие – это показатель Простые углеводы в основном все имеют высокий гликемический индекс и состоят из моно- и дисахаридов, а сложные обладают средним и низким ГИ и содержат в себе поли- и олигосахариды.

 Для справки:

Гликемический индекс – это показатель усвояемости углеводов. Чем выше ГИ продукта, тем быстрее углеводы из этого продукта будут усвоены организмом, и тем быстрее повысится уровень сахара в крови. А при резком повышении уровня сахара в крови поджелудочная железа реагирует мощным выбросом инсулина, который моментально распределяет этот сахар по клеткам нашего организма, а если они не нуждаются в этом сахаре, то инсулин направляет его в жировую ткань, которая с пребольшим удовольствием и охотой принимает все, что ей предлагают.

Чтобы было понятнее, давайте на примере продуктов рассмотрим, какие углеводы быстрые, а какие медленные .

Простые углеводы


Простые углеводы
делятся на моносахариды и дисахариды. Моносахариды состоят из одной сахарной группы – глюкоза, фруктоза и галактоза, а дисахариды состоят из двух молекул простых сахаров – сахароза, мальтоза и лактоза, в состав которых всегда входит глюкоза.

1. Глюкоза – это основной источник энергии для организма и питания нашего мозга. Глюкоза участвует в запасании гликогена, который является ничем иным, как полимером глюкозы и используется организмом также в виде топлива на протяжении всего дня и во время силовых тренировок.

Продукты, богатые глюкозой:

— морковь;

— пряники;

— финики;

— повидло;

— кукуруза;

— черешня.

2. Галактоза – это молекула, которая входит в состав лактозы, но в свободном виде сама не встречается.

3. Фруктоза – это природный сахар. Больше всего фруктозы в таких фруктах:

— клубника;

— бананы;

Фруктоза хоть и является природным сахаром, но это не делает ее совершенно безобидной. Более подробно о механизме действия фруктозы можете прочитать в этой статье:

Следом за моносахаридами идут дисахариды, которые состоят уже из двух молекул сахарной группы.

4. Сахароза – это соединение из глюкозы и фруктозы. Продукты, богатые сахарозой:

— варенье;

5. Лактоза содержит одну молекулу глюкозы и одну молекулу галактозы. В основном лактозой богаты молочные продукты, именно поэтому кушать молочные продукты при похудении следует в очень ограниченных количествах, так как лактоза имеет свойство вызывать брожение в кишечнике и отеки.

Продукты, богатые на лактозу:

— молоко;

— творог;

— молоко;

— ряженка;

6. Мальтоза – это две молекулы глюкозы. Мальтозы много в таких продуктах:

— мармелад;

— патока (крахмальная, карамельная, свекольная и др.);

— мороженое;

Итак, главное, что вы должны запомнить о простых углеводах это то, что простые углеводы быстро повышают концентрацию глюкозы в крови, на это поджелудочная железа вырабатывает гормон инсулин, и все клетки организма тут же открываются для усвоения глюкозы. Если вы в этот момент не двигаетесь, а сидите на месте, то вся глюкоза не используется клетками, а прямиком уходит в жировое депо! Если же вы двигаетесь (идёте, плывете, бежите, танцуете), то полученная энергия от углеводов сожжется для покрытия текущих энергозатрат организма.

Поэтому запоминаем правило №1:

ЕСЛИ ВЫ ХОТИТЕ ЕСТЬ ПРОСТЫЕ УГЛЕВОДЫ И НЕ ПОПРАВЛЯТЬСЯ, ТО НУЖНО ДВИГАТЬСЯ!!!

Норма простых углеводов в день

Количество простых углеводов в день должно составлять не более 30% от общего количества съедаемых углеводов .

Например, ваша дневная норма углеводов составляет 140 г , значит на простые углеводы приходится 42 г. Столько простых углеводов содержит:

— 1 хурма;

— 2 больших яблока;

— 2 средних апельсина;

— 2 груши;

— 500 г вишни;

— 600 г клубники;

— 90 г кураги;

— 80 г изюма;

— 50 г фиников;

— 30 г меда (2 ст.л.)

Сложные углеводы

Сложны углеводы – это крахмал, который содержится в основном в крупах и бобовых, и клетчатка, которая является основой всех овощей и фруктов.

1. Крахмал и процесс его усвоения

В одних продуктах крахмала очень много, из-за чего они имеют высокий ГИ, а в других – меньше, что делает их более медленными углеводами, которые долго усваиваются, и сахар в крови повышается на протяжении долгого времени.

Среди «коварных» сложных углеводов находится белый рис, в нем содержание крахмала аж 80%!!! Для сравнения в овсяной крупе содержание крахмала — 50%, в – 45%, в муке пшеничной – 74%, в макаронах – 70%, в гречке – 60%, в чечевице и перловке – 40%. То есть выходит, что рис теоретически относится к медленным углеводам, так как содержит в себе полисахарид крахмал, но на практике он ведет себя, как быстрый углевод, из-за чрезмерно высокого содержания этого самого крахмала.

Чем же объясняется этот механизм?

Дело в том, что при набухании одна молекула крахмала притягивает от 10 до 100 молекул воды. И чем больше молекула обводнена, тем более ДОСТУПНОЙ для организма она становится! Это связано с ферментом амилазой, который расщепляет крахмал. Амилаза действует только в водной фазе, и если молекула крахмала хорошо гидролизована (обвонена), то амилаза очень быстро проникает в нее, и происходит активный распад крахмала на молекулы глюкозы, отсюда уровень глюкозы в крови быстро растет. То есть: чем больше гидролизован крахмал, тем выше ГИ крупы, и тем быстрее сахар попадает в кровь, вызывая выброс инсулина.

Лично я не знаю людей, которые едят белый рис запаренным (в отличие от овсянки и гречки), обычно его все варят на медленном огне минут так 30-40, а это означает, что молекулы крахмала, который содержит рис, обводняются очень сильно, что делает этот углевод быстродоступным, а значит и жироотложение более вероятным.

Отсюда можно сделать вывод, что для каждой крупы, в зависимости от способа ее приготовления, меняется гликемический индекс. Для примера возьмем овсянку и рассмотрим ее гликемический индекс в зависимости от разных способов приготовления.

Вариант№1 Замоченная на ночь овсянка имеет самый низкий ГИ (менее 50)
Вариант№2 Замоченная на ночь овсянка, а утром доведенная до кипения и сразу снятая с огня, имеет ГИ чуть выше 50.
Вариант№3 Расплющенная овсянка, залитая кипятком на 5 мин имеет еще ниже ГИ чем вариант №1.
Вариант№4 Сваренная овсянка в молоке в течение 5-10 минут имеет высокий ГИ (около 60)
Вариант№5 Сваренная овсянка с сахаром/медом/сиропом имеет ГИ 100, как у сахара.
Вариант№6 Овсяная крупа, которая входит в состав пирога или пп-блинчиков, имеет ГИ свыше 100.

Отсюда можно сделать вывод: все сложные углеводы могут превратиться в быстрые в зависимости от:

1) способа приготовления — чем больше времени крупа находится под воздействием высоких температур (варка, тушение, запекание, жарка), тем быстрее идет гидролизация (обводнение) крахмала, и тем более быстродоступным он становится.

2) добавления других продуктов (мед, сахар, молоко и т.д.) – если вы добавляете в вашу крупу какой-либо ингредиент, гликемический индекс которого выше, чем у данной крупы, то вы автоматически превращаете ваш медленный углевод в быстрый.

Так что запоминайте правило №2 :

ЕСЛИ ХОТИТЕ БЫТЬ СТРОЙНЫМИ, ТО МИНИМАЛЬНО ТЕРМООБРАБАТЫВАЙТЕ ВСЕ СЛОЖНЫЕ УГЛЕВОДЫ!

Тоже самое касается и овощей: если вы варите/тушите овощи, то не держите их в воде слишком долго.

Источники сложных углеводов, содержащие крахмал:

Табл. 1 Крахмалосодержащие продукты (содержание крахмала в % на 100 г)

Норма потребления крахмалосодержащих продуктов в день

На сложные углеводы должно приходиться около 40% от дневной нормы всех углеводов.

40% от 140 г = 56 г. То есть выходит, что в среднем вы должны за день съесть около 56 г крахмалосодержащих углеводов, если ваша общая норма углеводов составляет 140 г.

56 г сложных углеводов содержится в:

— 85 г сухой овсяной крупы;

— 270 г вареного бурого риса;

— 285 г отварной фасоли;

— 330 г гречневой каши.

2. Клетчатка и механизм ее усвоения

Клетчатка в основном содержится в овощах и фруктах. Если говорить о сложных углеводах, то все же мы будем иметь в виду только овощи, так как в них содержание сахара в десятки раз меньше, чем во фруктах. Клетчатка не усваивается организмом, а поэтому транзитом проходит через весь желудочно-кишечный тракт, очищая его от различного мусора и шлаков. Клетчатка является очень важным компонентом здорового и правильного питания, поэтому ее присутствие в ежедневном рационе человека обязательно. Норма клетчатки в день колеблется от 20 до 45 грамм. Чтобы набирать свою дневную норму клетчатки, нужно употреблять в среднем за день от 500 до 1 кг свежих или тушеных овощей + 150-200 грамм каш, богатых клетчаткой (овсянка, гречка, перловка, бобовые).

Источники клетчатки:

— предпочтительней овощи с низким ГИ: огурцы, все виды капусты, спаржа, стручковая фасоль, редис, кабачки, зелень и др.

— в меньшем количестве овощи со средним ГИ: помидоры, горошек, болгарский перец, грибы.

Норма потребления клетчатки в день

На клетчатку, так же, как и на простые углеводы должно припадать 30% от общего количества съедаемых углеводов за день.

30% от 140 г = 42 г.

42 грамма клетчатки содержится в:

— 4 средних авокадо;

— 10 бананах;

— 8 средних яблоках;

— 100 г отрубей;

— 1,5 кг брокколи или белокочанной капусты;

— 1,6 кг яблок;

— 500 г арахиса.

А теперь давайте рассмотрим, как же вычислить эти самые ОБЩИЕ суточные граммы всех углеводов.

В таблице №2 указано количество калорий и количество всех углеводов за день в зависимости от вашего образа жизни (малоподвижный, умеренно активный, очень активный). Данные нормы рассчитаны на низкоуглеводный рацион питания, который подходит для девушек-эндоморфов, целью которых является снижение жировой составляющей.

Табл. 2 Низкоуглеводная корректирующая диета: поддерживающая калорийность рациона и рекомендованное потребление углеводов

Например, девушка весом в 69 кг хочет похудеть на 5 кг, при этом у нее сидячая работа, и она ведет малоподвижный образ жизни. Напротив ее веса (берем самый близкий по значению 68 кг) стоит цифра 98 г. То есть, выходит для того, чтобы держать свой вес в норме, не поправляться и не худеть, ей нужно в день употреблять 98 г простых и сложных углеводов . А для того, чтобы , она должна придерживаться норм потребления углеводов согласно желаемому весу – в ее случае это 91 г, которые соответствуют 64 кг.

Это что касается низкоуглеводного рациона питания, который подходит для девушек с предрасположенностью к полноте.

Если же вы уже похудели и хотите закрепить данный результат, удерживая свой вес на одной отметке, то для вас подойдет умеренно углеводный рацион питания, где будут совсем иные показатели и нормы потребления углеводов (табл. 3).

Табл. 3 Умеренно углеводная диета: поддерживающая калорийность рациона и рекомендованное потребление углеводов

Столбик «углеводы» разделен на 2 колонки – 33% и 40%. Первая колонка показывает нижний предел потребления углеводов, а вторая – верхний. Здесь вы просто выбираете то значение, которое находится напротив вашего текущего веса, и придерживаетесь его – все очень просто.

Время приема углеводов

И простые, и сложные углеводы дают организму энергию. Энергия нам нужна обычно в первой половине дня. Утреннее и обеденное время для многих людей являются самыми активными часами, именно поэтому днем нам нужно много энергии. К вечеру энергозатраты нашего организма снижаются, и замедляется метаболизм. Так происходит у 90% людей, которые работают и бодрствуют в дневное время суток, исключением являются люди, которые учатся или работают в вечернее время, а также люди-эктоморфы, у них обмен веществ и биологические часы немного отличаются от наших с вами. Но если вы не относитесь ко второй группе, то ваш обмен веществ в вечернее время всегда ниже, чем в дневное, это уже давно доказанный и всем известный факт. Именно по этой причине все диетологи и врачи-нутрициологи рекомендуют употреблять ВСЕ углеводы – и простые, и сложные – в первой половине дня, примерно до 16-00.

Если же у вас хороший обмен веществ, и вы, наоборот, трудно поддаетесь набору веса, то вы можете употреблять углеводы даже на ужин.

С чем сочетать простые и сложные углеводы?

Мы уже знаем, что скорость усвоения медленных углеводов зависит от способа приготовления, а также от сочетания их с другими продуктами, то же самое касается и быстрых углеводов. Для того, чтобы пища правильно усваивалась и не вызывала нарушений в процессах пищеварения, нужно знать, с чем лучше всего сочетать простые и сложные углеводы.

  1. Овсяную кашу лучше всего варить/запаривать не на молоке, а на воде. Из-за того, что очень высокий (ИИ молока – 90), при попадании их в организм идет мощнейший выброс инсулина, который направляет все съеденные углеводы (это и молочный сахар лактоза, содержащийся в молоке, и крахмал из овсянки) прямиком в жировое депо. То же самое касается и любимой многими гречневой каши с молоком. Из сложного углевода добавление молока делает ее простым и быстроусвояемым. Именно поэтому комбинация «сложные углеводы+молочные продукты» является НЕДОПУСТИМОЙ ни для похудения, ни для поддержания веса в норме. Исключение – массонабор. Если вы, наоборот, по природе имеете худощавое телосложение, и вам тяжело набрать вес, в таком случае каша с молоком – ваш спаситель.
  1. Сами простые и сложные углеводы между собой сочетаются хорошо, просто нужно правильно это делать. Для всех тех, кто любит сладкий вариант овсяной каши по утрам, на заметку: овсянку лучше всего сочетать с яблоком либо ягодами (клубника, малина, смородина) и никогда не есть овсяную кашу с АПЕЛЬСИНОМ, ГРЕЙПФРУТОМ, МАНДАРИНАМИ и АНАНАСОМ! Эти фрукты содержат в себе очень много лимонной кислоты, которая фактически останавливает переваривание крахмала из овсянки! Такой завтрак будет долгое время бродить у вас в кишечнике, вызывая вздутие живота, газообразование, диарею и другие неприятные последствия вплоть до рвоты. Всех их я ощутила на себе, когда жила в Тайланде и ела по утрам овсяную кашу с ананасом. Это продолжалось изо дня в день целых 6 месяцев. И все эти полгода я имела проблемы с моим ЖКТ… Никому не пожелаю того, что я ощущала практически каждый день: резкие режущие боли в животе, метеоризм, диарея и т.д., но на тот момент я не понимала из-за чего такая реакция. Конечно, у меня были догадки, что это ананас так действует на меня, но осознавать я этого не хотела, так как очень люблю ананасы и до отъезда домой хотела их наесться на несколько лет вперед))) Так что знайте: цитрусовые очень плохо сочетаются с любимым кашами, и если вы любите есть сладкую кашу, то выбирайте для этого безопасные фрукты с малым количеством лимонной кислоты.
  1. Простые углеводы в виде сладких фруктов или сухофруктов лучше не употреблять с творогом, так как творог – это сложный белок, а белковую пищу крайне нежелательно сочетать с простыми сахарами. Если в творог добавить банан, финики, дыню, то эта сладкая творожно-фруктовая масса начнет бродить в кишечнике и мешать всасыванию всех полезных микро- и макро-нутриентов. Творог хорошо сочетается с клетчаткой, зеленью и растительными жирами (орехи, авокадо, ).
  2. Клетчатка, которая находится в овощах, хорошо сочетается как со сложными углеводами, так и с простыми, а еще лучше с белками. Так что овощи можно кушать и с кашами, и с мясом, и с молочными продуктами. Только предпочтение лучше отдавать низкокрахмалистым овощам, у которых низкий гликемический индекс.

Теперь вы знаете, как и с чем лучше сочетать простые и сложные углеводы , и если помнить эти четыре правила, то вы никогда не будете иметь проблем с пищеварением, а процесс похудения у вас будет идти намного эффективнее.

Ну что ж, а теперь давайте подытожим все вышесказанное:

сложные и простые углеводы должны потребляться в оптимальных количествах ежедневно! Для похудения норма углеводов должна составлять 20-25% от суточной калорийности рациона, для поддержания веса в норме – 33-40%.

— для нормального пищеварения нужно правильно сочетать углеводы с другими продуктами: простые углеводы в виде клетчатки хорошо сочетаются со сложными углеводами и белками; каши можно сочетать с несладкими фруктами и ягодами (яблоко, киви, малина); фрукты нежелательно сочетать с белками (творог с фруктами – плохое сочетание).

— лучше всего каши не варить, а запаривать, либо же варить недолго (15-20 минут).

— отдавайте предпочтение фруктам и овощам с низким гликемическим индексом, они не вызывают резкого подъема сахара в крови и медленнее усваиваются организмом.

простые и сложные углеводы употребляйте в следующей пропорции: 20-30% — простые углеводы, 30% — клетчатка и 40-50% — сложные углеводы.

Надеюсь, эти советы помогут вам правильно распределить углеводы в течение дня, получить максимальную пользу от употребления углеводов без вреда для фигуры и здоровья. Простые и сложные углеводы могут быть, как вашими друзьями, так и врагами, все зависит от их количества в вашем ежедневном рационе питания. И я желаю вам найти эту золотую середину, которая приблизит вас к вашей цели!

Искренне Ваша, Янелия Скрипник!

В основе строения биологических молекул лежит способность атомов углерода образовывать ковалентные связи, обычно с атомами углерода, кислорода, водорода или азота. Молекулы могут иметь форму длинных цепей или формировать кольцевые структуры.

Среди органических молекул, входящих в состав клетки выделяют углеводы, липиды, белки, нуклеиновые кислоты.

Углеводы – это полимеры, которые образуются из моносахаридов путем гликозидного связывания. Моносахариды объединяются путем конденсации (реакция сопровождается выделением молекулы воды).

Углеводы делятся на простые (моносахариды) и сложные (полисахариды). Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С). В растворах пентозы и гексозы могут принимать циклическую форму.

Две молекулы моносахарида соединяются между собой с выделением молекулы воды и образуется дисахарид. Типичные примеры дисахаридов – сахароза (глюкоза + фруктоза), мальтоза (глюкоза + глюкоза), лактоза (галактоза + глюкоза). Дисахариды по своим свойствам похожи на моносахариды. Они хорошо растворяются в воде и сладкие на вкус.

Если количество моносахаридов увеличивать, то растворимость снижается, исчезает сладкий вкус.

Моносахариды, которые часто встречаются в природе – это глицериновый альдегид, рибоза, рибулоза, дезоксирибоза, фруктоза, галактоза.

Глицериновый альдегид участвует в реакциях фотосинтеза. Рибоза входит в состав РНК, АТФ. Дезоксирибоза входит в состав ДНК. Рибулоза в чистом виде в природе не встречается, а ее фосфорный эфир участвует в реакциях фотосинтеза. Фруктоза участвует в превращениях крахмала. Галактоза входит в состав лактозы.

Полисахариды, которые часто встречаются в природе – крахмал, гликоген, целлюлоза, хитин, инулин.

Крахмал состоит из двух полимеров α – глюкозы. Гликоген – это полимер α – глюкозы. Он является запасным питательным веществом в животных клетках. Целлюлоза – это полимер β – глюкозы. Входит в состав клеточной стенки растений. Целлюлоза состоит из параллельных цепей, которые соединяются водородными связями. Такое поперечное связывание предотвращает проникновение воды. Целлюлоза очень устойчива к гидролизу и является структурной молекулой.

Конец работы -

Эта тема принадлежит разделу:

Современные методы исследования клетки

Электронная микроскопия.. физики предложили использовать вместо пучка света пучок электронов электроны.. трансмиссионный электронный микроскоп..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Световая микроскопия
Клетка и ее органеллы были открыты с помощью светового микроскопа. Изображение некоторых органелл было сложно рассмотреть, так как они были прозрачны. В последствии были разработаны различные метод

Клеточная теория
Клетки –структурные и функциональные единицы живых организмов. Подобное представление, известное как клеточная теория, сложилась постепенно в девятнадцатом веке в результате микрос

Вода и неорганические соединения, их роль в клетке
На первом месте среди веществ клеток находится вода. Ее содержание зависит от вида организма, условий его местообитаний и т.д. Например, содержание воды в эмали зуба – 10%, в нервных клетк

Липиды, их роль в клетке
Липиды – это эфиры какого-либо спирта и жирных кислот. Они разнообразны по своему строению. Выделяют несколько групп липидов. Триацилглицеролы (или настоящие

Белки, их строение и функции
Белки входят в состав всех растительных и животных тканей. В клетках и тканях встречаются более 170 различных аминокислот. В составе белков обнаруживается лишь 26 из них. Обычными компонентами белк

Функции белков
Энергетическая – при полном расщеплении 1 г белка выделяется 17,6 кДж энергии. Структурная – белки входят в состав всех клеточных мембран и органоидов клетки, а также в

Ферменты
Ферменты –это специфические белки, которые присутствуют во всех живых организмах. Они играют роль биологических катализаторов. Ферменты могут являться простыми белками или сложными

Важнейшие группы ферментов
Номер и название классов Катализируемые реакции Примеры 1. Оксидоредуктазы 2. Трансферазы 3. Гидролазы 4. Лиазы 5. Изомер

Нуклеиновые кислоты
Нуклеиновые кислоты были открыты в 1869 году швейцарским химиком Мишером. Существуют два вида нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота). РНК (рибонуклеиновая

Репликация ДНК
Генетический материал должен быть способен к точному самовоспроизведению при каждом клеточном делении. Каждая цепь ДНК может служить матрицей для синтеза полипептидной цепочки. Такой механизм репли

Биологические мембраны, их строение, свойства и функции. Плазматическая мембрана
Плазматическая мембрана, или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую в

Клеточная стенка растений
Клеточная стенка является одним из важнейших компонентов клеток растений, грибов, имеется у растений. Клеточная стенка выполняет функции: Обеспечивает механическую прочность

Цитоплазма: гиалоплазма, цитоскелет
Живое содержимое эукариотических клеток слагается из ядра и цитоплазмы, которые вместе образуют протоплазму. В состав цитоплазмы входят основное водянистое вещество и находящиеся в нем органеллы.

Органоиды клетки, их строение и функции
Пластиды –автономные органеллы растительных клеток. Существуют следующие разновидности пластид: Пропластиды Лейкопласты Этиопласты Хлоропл