Реферат: Мембранные белки. Клеточная мембрана: определение, функции мембран

Большинство мембранных белков являются интегральными компонентами мембран (они взаимодействуют с фосфолипидами); почти все достаточно полно изученные белки имеют протяженность , превышающую 5-10 нм, – величину, равную толщине бислоя . Эти интегральные белки обычно представляют собой глобулярные амфифильные структуры . Оба их конца гидрофильны, а участок, пересекающий сердцевину бислоя, гидрофобен. После установления структуры интегральных мембранных белков стало ясно, что некоторые из них (например, молекулы белков-переносчиков) могут пересекать бислой многократно , как это показано на рис. 12.

Интегральные белки распределены в бислое асимметрично (рис. 13). Если мембрану, содержащую асимметрично распределенные интегральные белки, растворить в детергенте (небольшие амфипатические молекулы, образующие в воде мицеллы; с их помощью трансмембранные белки могут быть солюбилизированы. При смешивании детергента с мембраной гидрофобные концы его молекул связываются с гидрофобными участками на поверхности мембранных белков, вытесняя оттуда молекулы липидов. Поскольку противоположный конец молекулы детергента полярный, такое связывание приводит к тому, что мембранные белки переходят в раствор в виде комплексов с детергентом), а затем детергент медленно удалить, то произойдет самоорганизация фосфолипидов и интегральных белков и сформируется мембранная структура, но белки в ней уже не будут специфическим образом ориентированы. Таким образом, асимметричная ориентация в мембране по крайней мере некоторых белков может задаваться при их включении в липидный бислой. Наружная гидрофильная часть амфифильного белка, которая, конечно, синтезируется внутри клетки, должна затем пересечь гидрофобный слой мембраны и в конечном итоге оказаться снаружи.

Периферические белки не взаимодействуют с фосфолипидами в бислое непосредственно; вместо этого они образуют слабые связи с гидрофильными участками специфических интегральных белков . Например, анкирин, периферический белок, связан с интегральным белком полосы III эритроцитарной мембраны. Спектрин, образующий скелет мембраны эритроцита, в свою очередь связан с анкирином и, таким образом, играет важную роль в поддержании двояковогнутой формы эритроцита (см. ниже). Молекулы иммуноглобулина являются интегральными белками плазматической мембраны и высвобождаются только вместе с небольшим фрагментом мембраны. Интегральными белками являются многие рецепторы различных гормонов, и специфические полипептидные гормоны, связывающиеся с этими рецепторами, можно, таким образом, считать периферическими белками . Такие периферические белки, как пептидные гормоны, могут даже детерминировать распределение в плоскости бислоя интегральных белков – их рецепторов.

Биологическая химия Лелевич Владимир Валерьянович

Белки мембран.

Белки мембран.

Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными способами прикрепляться к мембране – поверхностные белки, либо, ковалентно контактировать с ней – заякоренные белки. Поверхностные белки почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов и адгезии.

Белки, локализованные в мембране, выполняют структурную и специфические функции:

1. транспортную;

2. ферментативную;

3. рецепторную;

4. антигенную.

Из книги Заводи кого угодно, только НЕ КРОКОДИЛА! автора Орсаг Михай

Ну а белки? В шестидесятых годах я неоднократно пытался завести в доме и белок, но каждая такая попытка кончалась самым печальным образом. Через некоторое время белки слабели, задние конечности у них отнимались и несчастные животные в судорогах погибали. Поначалу я

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

Не все гены кодируют белки Прежде всего, следует отметить, что кроме генов, кодирующих белки, в геноме имеются еще гены, на которых синтезируется РНК, которые не являются мРНК (то есть, не кодируют белок), но выполняют ряд самостоятельных важных функций в клетках. В

Из книги Живые часы автора Уорд Ритчи

11. Белки в колесе Чтобы познакомиться с современными поисками решения проблемы живых часов, обратимся к исследованиям, проводившимся биологами в последние годы. В числе первых следует, пожалуй, назвать работу Патриции де Курси.В 1955 году де Курси получила диплом

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Кровь: река жизни [От древних легенд до научных открытий] автора Азимов Айзек

Глава 11 Эти подвижные белки В начале предыдущей главы я упомянул, что органические компоненты пищи делятся на три группы. Я рассказал об одной из этих групп: углеводах. Далее логично было бы перейти к белкам, потому что их метаболизм в организме происходит параллельно с

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы Пер. А. НеизвестногоВ предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли

Из книги Гены и развитие организма автора Нейфах Александр Александрович

2. Белки хроматина Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных - более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны

Из книги Мир животных автора Ситников Виталий Павлович

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

4.1. Образование мембран – основа начала жизни Рассматривая гигантское многообразие современных живых организмов, можно прийти к выводу, что существовало множество путей развития, берущих начало от реликтовых форм жизни. На самом деле исследования молекулярной эволюции

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Клетки, белки и гены Жизнь есть способ существования белковых тел. Ф. Энгельс Наше тело является империей клеток, каждая из которых представляет собой миниатюрную фабрику для производства белков. Многие из этих важнейших макромолекул могут быть выделены из организма в

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Белки Белки имеют первостепенное значение в жизни организмов. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся в их организме белков. Например, в организме человека их известно более 5 млн.Белки – это полимеры,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Химический состав мембран. Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной

Из книги автора

Липиды мембран. Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в котором хвосты липидов обращены друг к другу. Толщина

Из книги автора

Белки Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная

Из книги автора

Белки мышечной ткани Выделяют три группы белков:1. миофибриллярные белки – 45 %;2. саркоплазматические белки – 35 %;3. белки стромы – 20 %.Миофибриллярные белки.К этой группе относятся:1. миозин;2. актин;3. актомиозин;а также так называемые регуляторные белки:4. тропомиозин;5.

ЛЕКЦИЯ

ТЕМА:” Введение в гистологию. Плазматическая мембрана, строение и функции. Структуры, формируемые плазматической мембраной”

Гистология в дословном переводе - это наука о тканях, однако это понятие не вмещает того действительно большого обьема материала, который освещает эта понастоящему медицинская дисциплина. Курс гистологии начинается с изучения цитологии не столько на светооптическом, сколько на молекулярном уровне, который в современной медицине логически вошел в этиологию и патогенез целого ряда заболеваний. Гистология – это и отдельные разделы из курса эмбриологии, не всей конечно, а той ее части, которая затрагивает вопрос закладки и дифференцировки тканевых зачатков. И,наконец, гистология – это большой раздел частной гистологии, то есть, раздел, изучающий строение и функции различных органов. Перечисленные разделы курса гистологии не оставляют сомнения в том, что изучение нашей дисциплины следует проводить в аспекте сохранения единства клеточного, тканевого, органного и системного уровней организации

Мы начнем гистологию с изучения эукариотической клетки, являющейся самой простой системой, наделенной жизнью. При исследовании клетки в световом микроскопе мы получаем информацию о ее размере, форме, и эта информация связана с наличием у клеток ограниченных мембраной границ. С развитием электронной микроскопии (ЭМ) наши представления о мембране, как о четко ограниченной линии раздела между клеткой и окружающей средой изменились, ибо оказалось,что на поверхности клетки имеется сложная структура, состоящая из следующих 3-х компонентов:

1. Надмембранный компонент (гликокаликс) (5-100 нм)

2. Плазматическая мембрана (8-10 нм)

3. Подмембранный компонент (зона вариации белков цитоскелета)

При этом 1 и 3 компоненты вариабельны и зависят от типа клеток, наиболее статичным представляется строение плазматической мембраны, которую мы и рассмотрим.

Изучение плазмолеммы в условиях ЭМ привело к заключению об однотипности ее структурной организации, при которой она имеет вид триламинарной линии, где внутренний и наружный слои электронноплотные, а расположенный между ними – более широкий слой представляется электроннопрозрачным. Такой тип структурной организации мембраны свидетельствует об ее химической гетерогенности. Не касаясь дискуссии по этому вопросу, оговорим, что плазмолемма состоит из трех типов веществ: липидов, белков и углеводов.

Липиды , входящие в состав мембран, обладают амфифильными свойствами за счет присутствия в их составе как гидрофильных, так и гидрофобных групп.

Амфипатический характер липидов мембраны способствует образованию липидного бислоя. При этом в фосфолипидах мембраны выделяют два домена: а) фосфатная – голова молекулы, химические свойства этого домена определяют его растворимость в воде и его называют гидрофильным

б) ацильные цепи, представляющие собой этерифицированные жирные кислоты – это гидрофобный домен.

Типы мембранных липидов. 1. Основным классом липидов биологических мембран являются фосфо(глицериды) (фосфолипиды), они формируют каркас

биологической мембраны (рис. 1).

Биомембраны – это двойной слой амфифильных липидов (липидный бислой). В водной среде такие амфифильные молекулы самопроизвольно образуют бислой, в котором гидрофобные части молекул ориентированы друг к другу, а гидрофильные к воде (рис. 2).

В состав мембран входят липиды следующих типов:

1. Фосфолипиды

2.Сфинголипиды “головки” + 2 гидрофобных “хвоста”

3.Гликолипиды

Холестерин (ХЛ) – находится в мембране в основном в срединной зоне бислоя, он амфифилен и гидрофобный (за исключением одной гидроксигруппы). Липидный состав влияет на свойства мембран: отношение белок/липиды близок 1:1, однако миелиновые оболочки обогащены липидами, а внутренние мембраны – белками.

Способы упаковки амфифильных липидов : 1. Бислои (липидная мембрана), 2.Липосомы - это пузырек с двумя слоями липидов, при этом как внутренняя, так и наружная поверхности являются полярны. 3. Мицеллы – третий вариант организации амфифильных липидов – пузырек, стенка которого образована одним слоем липидов, при этом их гидрофобные концы обращены к центру мицеллы и их внутренняя среда является не водной, агидрофобной.

Наиболее распространенной формой упаковки молекул липидов является образование ими плоского бислоя мембран. Липосомы и мицеллы – это скорые транспортные формы, обеспечивающие перенос веществ в клетку и из нее. В медицине липосомы используют для переноса водорастворимых, а мицеллы – для переноса жирорастворимых веществ.

Белки мембраны:

1. Интегральные (включены в липидные слои)

2. Периферические

Интегральные (трансмембранные белки):

1. Монотопные – (например, гликофорин. Они пересекают мембрану 1 раз), и являются рецепторами, при этом их наружный – внеклеточный домен – относится к распознающей части молекулы.

2. Политопные – многократно пронизывают мембрану – это тоже рецепторные белки, но они активизируют путь передачи сигнала внутрь клетки.

Мембранные белки, связанные с липидами.

4. Мембранные белки, связанные с углеводами.

Периферические белки – не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия - белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин , который расположен на внутренней поверхности клетки

2. Фибронектин, локализован на наружной поверхности мембраны

Белки – обычно составляют до 50% массы мембраны. При этом

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

2. Периферические мембранные белки (фибриллярные, глобулярные) выполняют функции:

а) наружные (рецепторные и адгезионные белки)

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы – это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са 2 , Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне- это иммуноглобулины (рис. 4) .

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

3. Межклеточные взаимодействия (адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент или самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуцляции формы клетки.

Структуры, формируемые плазмолеммой

Контуры клетки, даже на светооптическом уровне, не представляются ровными и гладкими, а электронная микроскопия позволила обнаружить и описать в клетке различные структуры, которые отражают характер ее функциональной специализации. Различают следующие структуры:

1. Микроворсинки – выпячивание цитоплазмы, покрытые плазмолеммой. Цитоскелет микроворсинки сформирован пучком актиновых микрофиламент, которые вплетаются в терминальную сеть апикальной части клеток (рис. 5). Единичные микроворсинки на светооптическом уровне не видны. При наличии значительного их числа (до 2000-3000) в апикальной части клетки уже при световой микроскопии различают “ щеточную каемку”.

2. Реснички – располагаются в апикальной зоне клетки и имеют две части (рис. 6) : а) наружную - аксонему

Б) внутреннюю – безальное тельце

Аксонема состоит из комплекса микротрубочек (9 + 1 пары) и связанных с ними белков. Микротрубочки образованы белком тубулином, а ручки – белком динеином – эти белки в совокупности формируют тубулин-динеиновый хемомеханический преобразователь.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных у основания реснички и служит матрицей при организации аксонемы.

3. Базальный лабиринт – это глубокие инвагинации базальной плазмолеммы с лежащими между ними митохондриями. Это механизм активного всасывания воды, а так же ионов против градиента концентрации.

1. Транспорт низкомолекулярных соединений осуществляется тремя способами:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

Простая диффузия – низкомолекулярные гидрофобные органические соединения (жирные кислоты, мочевина) и нейтральные молекулы (Н О, СО, О). С увеличением разности концентраций между отсеками, разделенными мембраной, растет и скорость диффузии.

Облегченная диффузия – вещество идет через мембрану также по направлению градиента концентрации, но с помощью транспортного белка – транслоказы. Это интегральные белки, обладающие специфичностью в отношении переносимых веществ. Это, например, анионные каналы (эритроцит), К - каналы (плазмолемма возбужденных клеток) и Са - каналы (саркоплазматический ретикулум). Транслоказа для Н О – это аквапорин.

Механизм действия транслоказы:

1. Наличие открытого гидрофильного канала для веществ определенного размера и заряда.

2. Канал открывается только при связывании специфического лиганда.

3. Канала нет как такового, а сама молекула транслоказы, связав лиганд, поворачивается в плоскости мембраны на 180 .

Активный транспорт – это транспорт с помощью такого же транспортного белка (транслоказы), но против градиента концентрации. Это перемещение требует затрат энергии.

Доля белка в общей массе мембраны может колебаться в очень широких пределах – от 18% в миелине до 75% в митохондриальной мембране.

По расположению в мембране белки можно разделить на: интегральные и периферические .

Интегральные белки являются, как правило, гидрофобными и легко встраиваются в липидный бислой.

Взаимодействие такого белка с мембраной происходит в несколько стадий. Сначала белок адсорбируется на поверхности бислоя, изменяет свою конформацию , устанавливая гидрофобный контакт с мембраной. Затем происходит внедрение белка в бислой. Глубина внедрения зависит от силы гидрофобного взаимодействия и соотношения гидрофобных и гидрофильных участков на поверхности белковой глобулы. Гидрофильные участки белка взаимодействуют с примембранными слоями по одну или обе стороны мембраны. Фиксация белковой глобулы в мембране происходит благодаря электростатическим и гидрофобным взаимодействиям. Углеводная часть белковых молекул (если она имеется) выступает наружу. Интегральные белки в силу тесной связи с бислоем оказывают на него существенное воздействие: конформационные перестройки белка приводят к изменению состояния липидов, так называемой деформации бислоя.

Периферические белки обладают меньшей глубиной проникновения в липидный бислой, и, соответственно, более слабо взаимодействуют с липидами мембраны, оказывая, на них гораздо меньшее воздействие, чем интегральные.

По характеру взаимодействия с мембраной белки делятся на монотопические, битопические, политопические :

монотопические белки взаимодействуют с поверхностью мембраны (моно – одним из слоев липидов);

битопические пронизывают мембрану насквозь (би – двумя слоями липидов);

политопические пронизывают мембрану несколько раз (поли- многократное взаимодействие с липидами).

Понятно, что первые относятся к периферическим белкам, а вторые и третьи к интегральным.

Белки мембран можно так же классифицировать по выполняемой ими функции. В связи с этим выделяют структурные белки:

· белки – ферменты;

· белки – рецепторы;

· транспортные белки.

Особую группу составляют белки цитоскелета клетки. Строго говоря, эти белки не являются компонентами мембраны, примыкая к ней с цитоплазматической стороны. Белки цитоскелета входят в состав всех его компонентов: миофиламенты содержат молекулы белка актина; в состав микротрубочек входит белок тубулин, промежуточные филаменты также содерждат более полиморфный белковый комплекс. Цитоскелет не только обеспечивают эластичность мембраны, противостоят изменениям объема клетки, но, по-видимому, участвует в и различных внутри- и внеклеточных механизмах регуляции.

Липидам в составе мембран отводят, в первую очередь, структурные свойства - они создают бислой, или матрикс, в котором размещаются активные компоненты мембраны - белки. Именно белки придают разнообразным мембранам уникальность и обеспечивают специфические свойства. Многочисленные мембранные белки выполняют следующие основные функции: обусловливают перенос веществ через мембраны (транспортные функции), осуществляют катализ, обеспечивают процессы фото- и окислительного фосфорилирования, репликацию ДНК, трансляцию и модификацию белков, рецепцию сигналов и передачу нервного импульса и др.

Принято делить мембранные белки на 2 группы: интегральные (внутренние) и периферические (наружные). Критерием такого разделения служит степень прочности связывания белка с мембраной и, соответственно, степень жесткости обработки, необходимой для извлечения белка из мембраны. Так, периферические белки могут высвобождаться в раствор уже при промывке мембран буферными смесями с низкой ионной силой, низкими значениями рН в присутствии хелатирующих веществ, например этилендиаминотетраацетата (ЭДТА), связывающих двухвалентные катионы. Периферические белки выделяются из мембран при таких мягких условиях, поскольку связаны с головками липидов или с другими белками мембраны при помощи слабых электростатических взаимодействий, либо с помощью гидро-фобных взаимодействий - с хвостами липидов. Наоборот, интегральные белки представляют собой амфифильные молекулы, имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны, поэтому для их извлечения требуется разрушить бислой. Для этих целей наиболее часто используют детергенты или органические растворители. Способы прикрепления белков к мембране довольно разнообразны (рис. 4.8).

Транспортные белки . Липидный бислой является непроницаемым барьером для большинства водорастворимых молекул и ионов, и их перенос через биомембраны зависит от деятельности транспортных белков. Можно выделить два основных типа этих белков: каналы (поры) и переносчики . Каналы представляют собой туннели, пересекающие мембрану, в которых места связывания транспортируемых веществ доступны на обеих поверхностях мембраны одновременно. Каналы в процессе транспорта веществ не претерпевают каких-либо конформационных изменений, их конформация меняется лишь при открывании и закрывании. Переносчики, наоборот, в процессе переноса веществ через мембрану изменяют свою конформацию. Причем в каждый конкретный момент времени место связывания переносимого вещества в переносчике доступно только на одной поверхности мембраны.

Каналы, в свою очередь, можно разделить на две основные группы: потенциалзависимые и регулируемые химически. Примером потенциалзависимого канала является Na + -канал, его работа регулируется изменением напряжения электрического поля. Иными словами, эти каналы открываются и закрываются в ответ на изменение трансмембранного потенциала . Химически регулируемые каналы


открываются и закрываются в ответ на связывание специфических химических агентов. Например, никотиновый ацетилхолиновый рецептор при связывании с ним нейромедиатора переходит в открытую конформацию и пропускает одновалентные катионы (подрадел 4.7 данной главы). Термины «пора» и «канал» обычно взаимозаменяемы, но под порой чаще понимают неселективные структуры, различающие вещества главным образом по размеру и пропускающие все достаточно малые молекулы. Под каналами чаще понимают ионные каналы. Скорость транспорта через открытый канал достигает 10 6 - 10 8 ионов в секунду.

Переносчики также можно разделить на 2 группы: пассивные и активные. С помощью пассивных переносчиков через мембрану осуществляется транспорт одного типа веществ. Пассивные переносчики задействованы в облегченной диффузии и лишь увеличивают поток вещества, осуществляемый по электрохимическому градиенту (например, перенос глюкозы через мембраны эритроцитов). Активные переносчики транспортируют вещества через мембрану с затратами энергии. Эти транспортные белки накапливают вещества на одной из сторон мембраны, перенося их против электрохимического градиента. Скорость транспорта с помощью переносчиков в очень сильной степени зависит от их типа и колеблется от 30 до 10 5 с -1 . Часто для обозначения отдельных переносчиков используют термины «пермеаза», «транслоказа», которые можно считать синонимами термина «переносчик».

Ферментные функции мембранных белков . В клеточных мембранах функционирует большое количество разнообразных ферментов. Одни из них локализуются в мембране, находя там подходящую среду для превращения гидрофобных соединений, другие благодаря участию мембран располагаются в них в строгой очередности, катализируя последовательные стадии жизненно важных процессов, третьи нуждаются в содействии липидов для стабилизации своей конформации и поддержания активности. В биомембранах обнаружены ферменты - представители всех известных классов. Они могут пронизывать мембрану насквозь, присутствовать в ней в растворенной форме или, являясь периферическими белками, связываться с мембранными поверхностями в ответ на какой-либо сигнал. Можно выделить следующие характерные типы мембранных ферментов:

1) трансмембранные ферменты, катализирующие сопряженные реакции на противоположных сторонах мембраны. Эти ферменты имеют, как правило, несколько активных центров, размещающихся на противоположных сторонах мембраны. Типичными представителями таких ферментов являются компоненты дыхательной цепи или фотосинтетические редокс-центры, катализирующие окислительно-восстановительные процессы, связанные с транспортом электронов и созданием ионных градиентов на мембране;

2) трансмембранные ферменты, участвующие в транспорте веществ. Транспортные белки, сопрягающие перенос вещества с гидролизом АТР, например, обладают каталитической функцией;

3) ферменты, катализирующие превращение связанных с мембраной субстратов. Эти ферменты участвуют в метаболизме мембранных компонентов: фосфолипидов, гликолипидов, стероидов и др.

4) ферменты, участвующие в превращениях водорастворимых субстратов. С помощью мембран, чаще всего в прикрепленном к ним состоянии, ферменты могут концентрироваться в тех областях мембран, где содержание их субстратов наибольшее. Например, ферменты, гидролизующие белки и крахмал, прикрепляются к мембранам микроворсинок кишечника, что способствует увеличению скорости расщепления этих субстратов.

Белки цитоскелета . Цитоскелет представляет собой сложную сеть белковых волокон разного типа и присутствует только в эукариотических клетках. Цитоскелет обеспечивает механическую опору для плазматической мембраны, может определять форму клетки, а также местоположение органелл и их перемещение при митозе. С участием цитоскелета осуществляются также такие важные для клетки процессы, как эндо- и экзоцитоз, фагоцитоз, амебоидное движение. Таким образом, цитоскелет является динамическим каркасом клетки и определяет ее механику.

Цитоскелет формируется из волокон трех типов:

1) микрофиламенты (диаметр ~ 6 нм). Представляют собой нитевидные органеллы - полимеры глобулярного белка актина и других связанных с ним белков;

2) промежуточные филаменты (диаметр 8- 10 нм). Сформированы кератинами и родственными им белками;

3) микротрубочки (диаметр ~ 23 нм) - длинные трубчатые структуры.

Состоят из глобулярного белка тубулина, субъединицы которого формируют полый цилиндр. Длина микротрубочек может достигать нескольких микрометров в цитоплазме клеток и нескольких миллиметров в аксонах нервов.

Перечисленные структуры цитоскелета пронизывают клетку в разных направлениях и тесно связываются с мембраной, прикрепляясь к ней в некоторых точках. Эти участки мембраны играют важную роль в межклеточных контактах, с их помощью клетки могут прикрепляться к субстрату. Они же играют важную роль в трансмембранном распределении липидов и белков в мембранах.