Из чего состоят кости. Частная анатомия

Основной структурно-функциональной единицей скелета явля­ется кость. Каждая кость в организме человека – это живой, плас­тичный, изменяющийся орган. Кость как орган состоит из несколь­ких тканей, имеет свою определенную морфологическую структуру и функционирует как часть целостного организма. Основной тканью в кости является костная ткань, кроме нее имеется плотная соединительная ткань, образующая, например, оболочку кости, покрывающую ее снаружи, рыхлая соединительная ткань, одевающая сосуды, хрящевая, покрывающая концы костей или образующая зоны роста, ретикулярная ткань – основа костного мозга и элементы нервной ткани – нервы и нервные окончания. Каждая кость имеет определенную форму, величину, строение и находится в связи с соседними костями. В состав скелета входит 206 костей – 85 парных и 36 непарных. Кости составляют примерно 18% веса тела.

Химический состав костей. Кость состоит из двух видов хими­ческих веществ: неорганических и органических. К неорганическим веществам относятся вода и соли (главным образом соли кальция). Органическое вещество кости называется оссеином. В свежей кости около 50% воды, 22% солей, 12% оссеина и 16% жира. Обез­воженная, обезжиренная и отбеленная кость содержит приблизи­тельно 1 / 3 оссеина и 2 / 3 неорганических веществ.

Особое специфическое физико-химическое соединение органи­ческих и неорганических веществ в костях и обусловливает их ос­новные свойства – упругость, эластичность, прочность и твердость. В этом легко убедиться. Если кость положить в соляную кислоту, то соли растворятся, останется оссеин, кость сохранит форму, но ста­нет очень мягкой (ее можно завязать в узел). Если же кость под­вергнуть сжиганию, то органические вещества сгорят, а соли оста­нутся (зола), кость тоже сохранит свою форму, но будет очень хрупкой. Таким образом, эластичность кости связана с органиче­скими веществами, а твердость и крепость – с неорганическими. Кость человека выдерживает давление на 1 мм 2 15 кг, а кирпич всего 0,5 кг.

Химический состав костей непостоянен, он меняется с возрастом, зависит от функциональных нагрузок, питания и других факторов. В костях детей относительно больше, чем в костях взрослых, оссеина, они более эластичны, меньше подвержены переломам, но под влиянием чрезмерных нагрузок легче деформируются Кости, выдерживающие большую нагрузку, богаче известью, чем кости менее нагруженные. Питание только растительной или только животной пищей также может вызвать изменения химического состава костей. При недостатке в пище витамина D в костях ребенка плохо откладываются соли извести, сроки окостенения нарушаются, а недоста­ток витамина А может привести к утолще­нию костей, запустению каналов в костной ткани.

В пожилом возрасте количество оссеина снижается, а количество неорганических ве­ществ солей, наоборот, увеличивается, что снижает ее прочностные свойства, создавая предпосылки к более частым переломам кос­тей. К старости в области краев суставных поверхностей костей могут появляться раз­растания костной ткани в виде шипов, выростов, что может ограничивать подвиж­ность в суставах и вызывать болезненные ощущения при движениях. О механических свойствах кости можно судить на основании их крепости на сжатие, растяжение, разрыв, излом и т. п. На сжатие кость в десять раз крепче хряща, в пять раз прочнее железобетона, в два раза больше крепости свинца. На растяжение компактное вещество кости выдерживает нагрузку до 10-12 кг на 1 мм 2 , а на сжатие – 12-16 кг. По сопротивлению на разрыв кость в продольном на­правлении превышает сопротивление дуба и равна сопротивлению чугуна. Так, напри­мер, для раздробления бедренной кости давлением нужно приблизительно 3 тыс. кг, для раздробления большеберцовой кости не менее 4 тыс. кг. Органическое вещество кости – оссеин выдерживает нагрузку на растяжение 1,5 кг на 1 мм 2 , на сжатие – 2,5 кг, крепость же сухожилий составляет 7 кг на 1 мм 2 , Несмотря на значительную крепость и прочность кость весьма пластичный орган и может перестраиваться на протяжении всей жизни че­ловека.

Рис. Строение трубчатой кости.

Кости в организме человека расположены не изолированно друг от друга, а связаны между собой в одно единое целое. Причем характер их соединения определяется функциональными усло­виями: в одних частях скелета движения между костями выражены больше, в других – меньше. Еще П.Ф. Леосгафт писал, что «ни в одном другом отделе анатомии нельзя так «стройно» и последователь­но выявить связь между формой и отправлением» (функцией). По форме соединяющихся костей можно определить характер движе­ния, а по характеру движений – представить форму соеди­нений.

Основным положением при соединении костей является то, что они «соединяются между собой таким образом, что при наимень­шем объеме места соединения здесь существуют наибольшее разно­образие и величина движений при возможно большей крепости в наиболее выгодном противодействии влиянию толчков и сотрясе­ний» (П.Ф. Лесгафт).

Все многообразие соединения костей можно представить в виде трех основных типов. Различают непрерывные соединения – синартрозы , прерывные – диартрозы и полупрерывные – гемиартрозы (полусуставы).

Непрерывными соединениями костей называются та­кие, при которых между костями нет перерыва, они связаны спло­шной прослойкой ткани.

Прерывные соединения – это такие, когда между соеди­няющимися костями имеется перерыв – полость.

Полупрерывные соединения характеризуются тем, что в ткани, которая расположена между соединяющимися костями, имеется небольшая полость – щель (2-3 мм), заполненная жид­костью. Однако эта полость не разделяет полностью костей, и основные элементы прерывного соединения отсутствуют. Примером такого вида соединений может служить соединение между лобковыми костями.

Непрерывные соединения костей филогенетически более древ­ние. У низших животных исключительно непрерывные соединения. У человека большую часть составляют прерывные соединения ко­стей. Это более поздний, наиболее совершенный и наиболее под­вижный вид соединений, хотя и менее прочный. Происходят прерывные соединения из непрерывных путем их постепенного преобра­зования.

Возникновение различного характера соединений костей можно наблюдать и в онтогенезе человека. Аналогично стадиям развития костей происходит и развитие их соединений. На ранних стадиях образования скелета зачатки костей связаны друг с другом лишь зародышевой соединительной тканью. В зависимости от функци­ональной направленности там, где между соединяющимися костя­ми нет необходимости в движениях большого размаха, остается со­единительная ткань, которая может превращаться в хрящ для обеспечения подвижности и амортизации толчков или в кость. Так формируются непрерывные соединения. Там, где необходима боль­шая подвижность между костями, соединительная ткань рас­сасывается, возникает прерывное соединение, с полостью между костями. Полость появляется к концу 2-го месяца эмбриональной жизни.

Как видно из названия, наука биохимия стоит на стыке двух важных дисциплин. Одна из них – химия, другая же - биология. И изучает биохимия, соответственно, химический состав живых клеток и организмов. Кроме того, биологическая химия (или химическая биология) исследует различные химические процессы, которые лежат в основе жизнедеятельности абсолютно любого живого существа. Но, в данном случае, наиболее интересным будет строение кости лошади с точки зрения биохимии.

Как и любого позвоночного животного, кости выполняют опорную основу для тела. В комплексе - это костяк или , который участвует в движениях тела животного, а также защищает внутренние органы. С одной стороны, скелет лошадей очень схож со скелетом тех же больших кошек или, например, волков (все эти виды животных, как известно, передвигаются на четырёх конечностях). Но, с другой стороны, лошади кардинально от них отличаются. И не только в физическом плане. Кости скелета лошади ещё и имеют довольно сложный химический состав.

Кости скелета

Абсолютно все кости у лошади состоят из различных соединений. Эти соединения, в свою очередь, подразделяются на органические и неорганические. К первым можно смело отнести белок (по-научному - оссеин), а так же липиды (это - жёлтый костный мозг). Ко вторым, чаще всего, относят воду и различные минеральные соли. Среди них: кальций, калий, натрий, магний, фосфор и другие химические элементы. А если, например, извлечь из организма взрослой особи кость, то можно увидеть, что на половину она состоит из воды, на 22% - из минералов, на 12% - из белка и на 16% из липидов.

По своим свойствам кости у лошадей обладают довольно высокой твёрдостью и прочностью. Во многом это зависит от высокого содержания минералов и других необходимых элементов. Ещё два немаловажных свойства – эластичность и упругость. Оба они напрямую зависят от белка. А вообще, такое сочетание твёрдости и эластичности во многом достигается за счёт специфического сочетания органики и неорганики. И если сравнивать кости лошади с каким-либо материалом, то по упругости и прочности это всё равно, что бронза или медь.

Но не всегда кости у лошадей будут такими твёрдыми и эластичными. Соотношение многих компонентов в составе кости зависит, прежде всего, от возраста лошади, а уже потом от питания и времени года. Например, у молодого животного отношение белка к минералам 1:1. У взрослого животного – 1:2. А у старого 1:7.


Расположение костных отделов

Каждая кость каждой лошади состоит из костной ткани. Сама ткань постоянно и довольно быстро видоизменяется. Кроме всего этого, костная ткань, наверное, единственная во всём организме способна к полной регенерации. Что интересно, в ней могут происходить сразу два противоположных друг другу диаметрально процесса – это процесс восстановления и процесс разрушения. На все эти процессы оказывают сильное влияние различные механические силы, которые имеют место быть в период статики и/или динамики животного.

Сама по себе костная ткань лошади состоит из различных клеток и межклеточного вещества.

Костных клеток выделяют всего несколько видов:

  1. Остеобласты.
  2. Остеоциты.
  3. Остеокласты.

Остеобласты представляют собой самые молодые клетки. Они синтезируют межклеточное вещество.


Остеобласты

Когда оно накапливается, то остеобласты в нём замуровываются и становятся, в последствии остеоцитами. Ещё одна их важная функция – непосредственное участие в процессах отложения кальция всё в том же межклеточном матриксе. Этот процесс называется кальцификацией.

В переводе с греческого языка, слово «остеоциты» обозначает «вместилище клетки».


Остеоциты

Эти клетки встречаются у зрелой особи. Как говорилось выше, образуются они из остеобластов. Тела их расположены в полостях основного вещества, а отростки – в канальцах, отходящих от полостей. По мнению многих учёных, они принимают активное участие в образовании белка и растворяютмежклеточное неминерализированное вещество. Именно им дано обеспечивать объединение кости, а также её структурную интеграцию.

Остеокласты же – это огромные клетки со множеством ядер (15-20 близкорасположенных).

Их диаметр приблизительно 40 мкм. Они способны появляться в тех местах, где костнная структура рассасывается. Эти клетки костную ткань удаляют посредством разрушения коллагена, а также растворения минералов. Таким образом, их основная их функция – это удаление продуктов распада в кости, и, конечно же, растворение минеральных структур.


Остеокласты

И последняя вещь, входящая в состав костной ткани – это межклеточное вещество. Его так же называют костным матриксом. Представлен он, в основном, коллагеновыми волокнами, а также одним аморфным компонентом.

Благодаря коллагену минералы в кости откладываются в виде системы из двух фаз:

  • Кристаллический гидроксиапатит.
  • Аморфный фосфат кальция.

Первая фаза способствует появлению энергии, необходимой для преобразования костей. Далее кость становится полярной. Вогнутые части имеют отрицательный заряд, выпуклые – положительный.

Как известно, костная ткань по своей химической структуре довольно сложна. В её составе есть и белки (оссеин), и различные минералы, и, конечно же, вода (её, как раз больше всего – 50%). Да и клеточный состав здесь довольно сложный: остеобласты, остеоциты, остеокласты и межклеточное вещество. Понятное дело, что для человека, в химии ничего не понимающего, всё это может оказаться довольно сложным.

Но помимо этого всего, можно выделить ещё два основных вида такой ткани. Это: пластинчатая и грубоволокнистая. Уже по названиям можно представить себе, что первый тип похож скорее на грубое волокно, а второй напоминает пластинки.

Грубоволокнистый тип

Грубоволокнистому типу костной ткани лошади больше соответствует хаотическое расположение коллагена в межклеточном матриксе.

Именно из такого типа костной ткани и построен основной скелет плода, а также скелет новорождённого животного. У взрослых особей грубоволокнистый тип ткани встречается только в тех зонах, где сухожилия скреплены с костями. Также его можно заметить в швах черепа, сразу после их непосредственного зарастания.

А вот пластинчатый тип – это уже совсем, так сказать, другая история.

Здесь главная особенность в том, что волокна белка и коллагена расположены в очень строгом порядке и формируют особые пластины цилиндрической формы. Они вставлены одна в другую и «опоясывают» сосуды. Вместе с сосудами, эти пластины опоясывают и нервы, которые расположены в гаверсовом канале.

Пластинчатый тип

В общем, все эти образования получили одно-единственное название: «остеон». То есть, структурная единица пластинчатой ткани – это именно остеон (osteonum). Каждый остеон, в свою очередь, состоит из нескольких цилиндрических пластин (обычно, от 5 до 20).

Каждая такая пластина имеет диаметр в 3-4 мм. Сами по себе остеоны располагаются в полном порядке. И от этого порядка напрямую зависит функциональная нагрузка на всю кость. Из остеонов затем формируются различные перекладины вещества кости. Их ещё называют балками. Эти же балки образуют некое компактное вещество, если, конечно лежат «плотно». В противном случае, если перекладины лежат «рыхло», то балки образуют вещество губчатое.

Если первый тип костной ткани свойственен скорее организму молодому, то на втором типе построен скелет уже организма взрослого (зрелого). Впрочем, элементы первого типа иногда присутствуют у взрослых особей. А элементы второго, в зачаточном состоянии, у более молодых.

В организме любого позвоночного животного, включая человека, находится большое количество разнообразных тканей. И все эти ткани изучает такая наука как гистология. Понятно дело, что и сама гистология подразделяется на ещё более узкоспециальные дисциплины. Название же гистологии так с греческого и переводится – «знание о тканях». Человека, занимающегося этой точной наукой, называют гистологом.

В наше время основными предметами изучения гистологии являются следующие виды тканей:

  • Костная.
  • Хрящевая.
  • Соединительная.
  • Миелоидная.
  • Жидкие ткани внутренней среды.
  • Эндотелий.
  • Нервная ткань.

Из костной ткани образованы кости скелета. Она наиболее твёрдая, прочная, эластичная и упругая.


Костная ткань

Из хрящевой ткани образованы хрящи. Она состоит из хондробластов, хондроцитов, хондрокластов и межклеточного вещества.


Хрящевая ткань

Также, выделяют три типа хрящевой ткани у лошадей: гиалиновая (суставы, рёбра), волокнистая (межпозвоночные диски) и эластическая (уши).

Соединительная ткань также состоит из трёх основных типов клеток (фибропласты, фиброциты и фиброкласты) и межклеточного вещества.

Помимо всего прочего в её состав входят волокна и аморфные вещества (нейтральные и кислые гликозамингликаны). Видов соединительной ткани у коней также два. Это: рыхлая (сопровождает сосуды и нервы) и плотная (формирует фиброзный слой надкостницы). Из названия становится предельно ясна её основная функция.


Соединительная ткань

Миелоидная ткань отвечает за красный костный мозг и развитие клеток, влияющих на лошади.


Миелоидная ткань

К жидким тканям внутренней среды относят кровь и , которые участвуют в транспортировке кислорода, углекислого газа, питательных веществ и всех конечных продуктов обмена. Они выполняют сразу три важные функции: транспортную, трофическую (регуляция состава межклеточной жидкости) и защитную. С жидкими тканями, кстати, связан интересный факт – около 50% всей венозной крови содержится в костях.

Эндотелий – это особенный вид эпителиальных тканей, образующий внутреннюю стенку сосудов.


Эндотелий

Ещё одна важная вещь, которая важна для гистолога – это нервная ткань. Она состоит из нервов и нервных окончаний.

И если какой-либо вид ткани повреждён или находится в плохом состоянии, то очень велико шанс, что животное может тяжело заболеть и погибнуть. И чтобы этого не произошло, нужен правильный уход, правильное питание, и, конечно же, забота.

Вообще, такая наука как анатомия «не предназначена», так сказать, для изучения костей. Анатомия направлена, скорее, на изучение организма в целом, а также на изучение внутренней формы и структуры органов. Но, так как в организме любого живого существа всё взаимосвязано, то и скелет можно изучать в анатомическом ключе. Этим и занимается анатом. И с точки зрения этого самого анатома, кость (в переводе с латыни, кстати, обозначает «ось»), - орган вполне себе самостоятельный.

И он имеет определённые размеры, строение и форму. Таким образом, в кости взрослой особи можно выделить несколько определённых слоёв:

  1. Надкостница.
  2. Компактное и губчатое вещества.
  3. Костномозговая полость с эндоостом.
  4. Костный мозг.
  5. Суставной хрящ.

А вот кость, которая растёт, кроме пяти вышеописанных компонентов имеет ещё и некоторые другие, необходимые для формирования ростовых зон. Здесь можно выделить сразу тройку подвидов костной ткани и, конечно же, метафизарный хрящ.

Надкостница же расположена внутри кости на самой её поверхности. Состоит она, обычно, из двух слоёв: слоя внутреннего и слоя наружного.

Надкостница

Первый - это соединительная плотная ткань. И выполняет она, как водится, функции защиты. Второй – это ткань наиболее рыхлая, и за счёт неё и происходят регенерация вместе с ростом. Сама же надкостница отвечает сразу за три очень важных функции: остеобразующую, трофическую и защитную.

Компактное (или плотное, как его ещё называют) вещество расположено уже за самой надкостницей. Состоит оно из ткани пластинчатой. Отличительной особенностью данного вещества являются прочность и плотность.

Сразу под ним можно рассмотреть другое вещество - губчатое. Построено оно абсолютно из такой же ткани, из какой построено вещество компактное. Вот только отличают его костные перекладины, по свойствам своим довольно рыхлые. Они же, в свою очередь, образуют специальные ячейки.

Внутри самой кости можно обнаружить полость. Её именуют костномозговой. Стенки этой полости (впрочем, как и стенки костных балок) покрыты очень тоненькой оболочкой, состоящей из волокон. А вот стенки этой оболочки - выложены соединительной тканью. Называется данная оболочка эндоостом. В его состав входят остеобласты.

А сам красный костный мозг можно обнаружить внутри ячеек губчатого вещества или даже в костномозговой полости.


Красный костный мозг

В костном мозге проходят процессы образования крови. В ходе , а также у новорожденных особей, все кости участвуют в процессе кровообразования. С возрастом это начинает постепенно проходить, и красный мозг превращается в жёлтый.

И, наконец, суставной хрящ.


Суставной хрящ

Он построен из гиалиновой ткани. Она покрывает поверхности суставов в кости. Толщина хряща сильно различается. Более тонкий он в проксимальном отделе. Надхрящины как таковой не имеет, и почти не подвержен окостенению. Приличная нагрузка может способствовать его истончению.

Скелет взрослой лошади (да и любого другого высшего позвоночного животного) состоит из нескольких определённых типов костей. Исходя из этого, можно выделить несколько основных классификаций. Первая из них – это строение кости. Об этом было сказано в предыдущих статьях. Вторая – форма кости. К примеру, рёберные кости и кости голени сильно разнятся. Третья классификация костей у лошади – по развитию (кости молодого и старого животного различны) И, наконец, четвёртая – по функциям.

Длинные кости лошади подразделяют на дугообразные (к ним относятся рёбра) и трубчатые. Последние выполняют роль своеобразных рычагов передвижения. Состоят из длинной части тела (её ещё называют диафиз) и утолщённых концов (их именуют эпифизом). Между ними заключён метафиз, который обеспечивает рост кости.

Более короткие кости состоят, в основном из губчатого вещества. Снаружи они бывают покрыты тончайшим слоем вещества компактного или суставным хрящом. Расположены в местах большей подвижности и большей нагрузки. Они как бы являются своеобразными рессорами.

Плоские же кости образуют стенки полостей и пояс конечностей (плечевой или тазовый). Их можно представить в виде довольно широкой поверхности, которая предназначена для крепления мышц. На костях плоских можно чётко просмотреть края и углы. Состоят, обычно, из трёх слоёв компакты. Между ними – немного губчатого вещества. При этом, они активно выполняют функцию защиты. Примерами таких костей могут послужить: кости крыши черепа , грудины, лопатки, а также тазовые кости.

Из названия предельно ясно, что «os pneumaticum» или кости воздухоносные связаны с «ношением воздуха». Внутри своего так называемого тела, эти кости имеют определённых размеров полость. К этим полостям можно смело отнести пазуху и синус. Изнутри, и то, и другое, выстлано слизистыми.

К ним можно отнести оболочки:

  • Верхнечелюстную.
  • Клиновидную.
  • Лобную.

Все они в той или иной мере заполнены воздухом. Помимо этого, они могут хорошо сообщаться и с полостью носа.

Последний из подвидов – это кости типа смешанного, имеющие довольно усложнённую форму. Чаще всего данный вид сочетает в себе сразу несколько черт нескольких определённых вариантов. Состоят они из тех частей, которые имеют совершенно разное строение и очертание. Разными они могут быть и по происхождению. К ним можно отнести, например, кости или позвонки, находящиеся у самого основания черепа. Кстати, через некоторые черепные кости может проходить очень большое количество вен. И такие кости называются «диплозом».


Схема разновидности костей

Если разбирать классификацию костей по происхождению, то можно выделить два основных вида. Это кости первичные и кости вторичные.

Первичные развиваются из так называемой мезенхимы, и стадий развития проходят всего лишь две: костную и соединительнотканную. К первичным костям можно отнести многочисленные покровные кости черепа: верхнечелюстную, лобную, межтеменную, носовую, резцовую, теменную и чешую височной кости.


Первичные кости

Для них особо характерна эндсемальная оссификация. То есть, оссификация в соединительную ткань.

Вторичные кости развиваются из зачатка формирования костной и хрящевой тканей организма (склеротома мезодермы). В отличие от первичных костей, вторичные проходят сразу три главных стадии развития:

  1. Соединительнотканную.
  2. Хрящевую.
  3. Костную.

Таким образом, развивается абсолютное большинство костей скелета.

Значительно сложнее проходит процесс оссификации или окостенения вторичных костей. Задействованы здесь сразу три точки окостенения, две из которых – эпифазные, одна – диафазная.


Процесс оссификации

Сами по себе кости формируются на базе зачатков хрящей. Хрящевая ткань замещается потом костной и включает два вида окостенения: перихондральное окостенение и окостенение энхондральное.

Перихондральное начинается тогда, когда остеобласты на внутренней стороне надхрящницы образуют фиброзную ткань, а затем и пластинчатую. В этом же месте надхрящница преобразуется в надкостницу и формирует костную манжетку. Она же нарушает питание хряща, и он постепенно разрушается.

Энхондральное окостенение начинается примерно тогда, когда оканчивается перихондральное. Центры данного вида окостенения появляются в разное время в эпифазах длинных костей. В этих же центрах хрящ резорбируется, после чего формируется энхондральная кость. После неё появляется кость перихондральная. Дополнительные точки оссификации – апофизы – появляются ближе к концу плодного периода. Окостеневшие же эпифазы и диафиз соединяются с помощью хрящевых пластинок в трубчатых костях.

Хрящевые пластинки по-другому называются метафизарными хрящами (на рисунке под номером 5).

Хрящевые пластинки

Эти хрящи располагаются, как раз-таки, в зоне непосредственного роста. И кость растёт именно за счёт них. Прекращается рост с последующей оссификацией. Проще говоря, сливаются воедино все основные точки и добавочные. После чего они соединяются в одну сплошную массу, и происходит дальнейшее синостозирование.

Кости любого позвоночного животного формируются не просто так, а по определённой закономерности. Эту закономерность впервые выявил П.Ф. Лесгафт, основоположник современной функциональной анатомии.

Среди этих закономерностей Лесгафт особенно подчёркивал принцип образования костной ткани. Далее он говорил о степенях развития кости, так как развитие происходит так же по определённой закономерности. О прочности и лёгкости костей, о внешней форме и её последующей перестройки Лесгафт так же не забывал.

Теперь более подробно хочется сказать о костной ткани. Она «имеет привычку» образовываться именно в тех местах, где происходит наибольшее натяжение или сжатие.

Существует некая закономерность: прямо пропорционально развитию костной структуры. То есть, чем лучше развиты мышцы, тем лучше будут развиты и кости.


Интенсивность деятельности мышц

Их внешняя форма (костей) может меняться под давлением или растяжением. Рельеф и форма также зависят от мышц. Таким образом, если мышца соединена с костью сухожилием, то формируется бугор. Если же мышца вплетена в накостницу, то углубление.

При оптимально затрачиваемом костном материале арочное и трубчатое строение костей обеспечивает большую прочность и лёгкость.

Сама по себе внешняя форма костей напрямую зависит от того давления, которое оказывают на них (кости) окружающие ткани. Кроме того, внешняя форма может несколько видоизмениться при давлении на кость различных органов. Здесь стоит пояснить: кости образуют для органов так называемые «костные вместилища» или ямки. Соответственно, малейшее изменение костей приведёт к изменению органов и наоборот. Там, где проходят сосуды, на костях имеются определённые борозды. К тому же измениться форма костей может и при увеличении или же при уменьшении давления.

К тому же форма кости может неплохо перестроиться. Происходит это под влиянием различных внешних сил. Также на перестройку оказывает сильное влияние время. К примеру, если понаблюдать за молодыми и старыми животными, то выяснится, что у молодняка рельеф кости сильно сглажен.


Сглаженный рельеф кости

А вот у старых животных, наоборот, очень и очень резко выражен.

И всё вышеописанное ещё раз подтверждает, как всё в организме взаимосвязано. К примеру, если у животного (или даже у человека) повреждены кости, то это скажется и на внутренних тканях и органах. И если оказать своевременную и правильную помощь, то животное проживёт долгую и насыщенную жизнь.

Влияние различных факторов на развитие кости

Говоря о различных факторах, оказывающих влияние на кости скелета, нельзя не упомянуть эндокринную систему. При помощи определённых гормонов (женских или мужских), эта же система регулирует деятельность всех внутренних органов. Сами гормоны выделяются в кровь эндокринными клетками. Кроме внутренних органов, эндокринная система оказывает довольно-таки значительное влияние на развитие всех костей скелета. И таким образом, все главные точки окостенения появляются ещё до начала созревания.

Кроме того, выявлена зависимость строения скелета от состояния лошади. ЦНС осуществляет всю трофику кости. Когда трофика усиливается, то количество костной ткани в ней увеличивается в разы. Она становится значительно плотнее и компактнее. Если же она становится слишком плотной и слишком компактной, то есть риск развития остеосклероза. Когда трофика слабеет, кость, соответственно, разряжается. И начинается другое неприятное заболевание – остеопороз.

Кроме эндокринной и нервной систем, состояние кости зависит ещё и от кровеносной.


Влияние на кости кровеносной системы

Сам процесс оссификации, начиная от момента появления самой первой точки окостенения и заканчивая синостозирования, проходит при участии сосудов. Проникая в хрящ, сосуды его ещё больше разрушают. Сам же хрящ будет замещён костной тканью. После рождения оссификация и рост костей также протекают в очень тесной взаимосвязи и зависимости от кровоснабжения. Это происходит в силу того, что формирование костных пластин базируется вокруг сосудов крови.

Все изменения, происходящие в кости, как уже говорилось выше, зависят от физических нагрузок.

Именно благодаря им компактное вещество внутри кардинально перестраивается. В этом случае может наблюдаться увеличение размеров и количества остеонов. Если нагрузка неправильно дозирована, то могут возникнуть серьёзные осложнения. Если же наоборот, правильно, то это значительно замедлит все процессы старения в кости.

В молодом возрасте, понятное дело, скорость резорбции ещё довольно низкая, а костный матрикс образуется быстро. В зрелом и старческом возрастах все изменения скелета связывают со значительно возросшей скоростью резорбции и низкими процессами образования костного вещества.

Так или иначе, кость абсолютно любого живого организма – структура динамическая. Она способна приспособится к постоянно меняющимся условиям окружающей среды.

Совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям, называют тканью . В организме человека выделяют 4 основных группы тканей : эпителиальную, соединительную, мышечную, нервную.

Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало.

Таким образом создается препятствие для проникновения микробов, вредных веществ и надежная защита лежащих под эпителием тканей. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому .

Различают несколько видов эпителия – кожный, кишечный, дыхательный.

К производным кожного эпителия относятся ногти и волосы. Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Выделяемые железами ферменты расщепляют питательные вещества. Продукты расщепления питательных веществ всасываются кишечным эпителием и попадают в кровеносные сосуды. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные кнаружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы.

Соединительная ткань . Особенность соединительной ткани – это сильное развитие межклеточного вещества.

Основными функциями соединительной ткани являются питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества. Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую похожа и жировая ткань. Она богата клетками, которые наполнены жиром.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью.

Мышечная ткань . Эта ткань образована мышечными . В их цитоплазме находятся тончайшие нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань.

Поперечно-полосатой ткань называется потому, что ее волокна имеют поперечную исчерченность, представляющую собой чередование светлых и темных участков. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань состоит из волокон вытянутой формы, достигающих в длину 10–12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной мышцы, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. Сокращение мышц имеет огромное значение. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметра кровеносных сосудов.

Нервная ткань . Структурной единицей нервной ткани является нервная клетка – нейрон.

Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы – овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки. Большинство нейронов имеют короткие, толстые, сильно ветвящиеся вблизи тела отростки и длинные (до 1,5 м), и тонкие, и ветвящиеся только на самом конце отростки. Длинные отростки нервных клеток образуют нервные волокна. Основными свойствами нейрона является способность возбуждаться и способность проводить это возбуждение по нервным волокнам. В нервной ткани эти свойства особенно хорошо выражены, хотя характерны так же для мышц и желез. Возбуждение предается по нейрону и может передаваться связанным с ним другим нейронам или мышце, вызывая ее сокращение. Значение нервной ткани, образующей нервную систему, огромно. Нервная ткань не только входит в состав организма как его часть, но и обеспечивает объединение функций всех остальных частей организма.

Костная ткань отличается рядом весьма своеобразных качеств, резко выделяющих ее среди всех других тканей и систем человеческого организма и ставящих ее на обособленное место. Основной и главной особенностью костной ткани является ее богатство минеральными солями.

Если принять вес тела взрослого человека в среднем за 70 кг, то костный скелет весит 7 кг, а вместе с костным мозгом - 10 кг (мышцы - „мясо” - весят 30 кг). Сами кости по весу состоят из 25% воды, 30% органического вещества и 45% минералов. Содержание воды и, стало быть, относительное содержание и других ингредиентов колеблется. Количество воды сравнительно очень велико в эмбриональной жизни, оно убывает в детском возрасте и постепенно уменьшается по мере роста и развития ребенка, отрока и зрелого человека, достигая в старости наименьшего отношения к общему весу. Кости с возрастом можно сказать буквально высушиваются.

Органический состав костей формируется главным образом из белков - протеинов, преимущественно оссеина, но в сложную органическую часть костной ткани входят и некоторые альбумины, мукоидные и другие вещества весьма непростого химического строения.

Каков же больше всего нас интересующий минеральный состав костного вещества? 85% солей составляет фосфорнокислая известь, 10,5% углекислый кальций, 1,5% фосфорнокислая магнезия, а остальные 3% - это натрий, калий, примеси хлора и некоторых редких для человеческого организма элементов. Фосфорнокислый кальций, стало быть составляющий 19/20 содержимого всего солевого костного вещества, образует 58% общего веса костей.

Фосфорнокислые соли имеют кристаллическое строение, и кристаллы располагаются в кости правильно, закономерно. Весьма тщательное изучение минерального остова костного вещества, произведенное в 30-х годах при помощи наиболее совершенных методов, в первую очередь путем рентгенологического структурного анализа, показало, что неорганическое костное вещество человека имеет строение фосфатита-апатита, а именно гидроксил-апатита. При этом интересно, что апатит в костях (и в зубах) человека близок или даже подобен естественному минеральному апатиту в мертвой природе. На это тождество апатита человеческого костного и горнорудного происхождения указывает также их сравнительное исследование в поляризационном свете. Человеческий костный апатит отличается еще содержанием незначительного количества галоида хлора или фтора. Некоторые специалисты по структурному анализу стоят на той точке зрения, что в человеческих костях апатит еще связан с другими химическими соединениями, т.е. что кристаллы неорганической костной субстанции - это смесь двух неорганических химических веществ, одна из которых близка к апатиту. Считают, что наиболее правильно физико-химическая структура костного апатита расшифрована венгерским ученым Сент Нарай-Сабо (St. Naray-Szabo). Наиболее вероятна такая формула строения неорганического состава кости: ЗСА 3 (РO 4) 2 . СаХ 2 , где X - это или Cl, F, ОН, V2O, 1 / 2 SO 4 , 1 / 2 СO 3 и т. д. Есть также указания, что апатит состоит из двух молекул - CaF. Са 4 (РO 4) 3 или СаС1. Са 4 (РO 4) 3 .

Чрезвычайно интересны указания Райнольдса (Reynolds) и др. на то, что при некоторых патологических процессах кости теряют свое нормальное химическое апатитовое строение. Это имеет место, например, при гиперпаратиреоидной остеодистрофии (болезни Реклингхаузена), в то время как при болезни Педжета апатитовая структура кристаллов полностью сохраняется.

Костная ткань - это пусть и весьма древняя по филогенезу, но вместе с тем высоко развитая и исключительно тонко и детально дифференцированная, крайне сложная по всем своим жизненным проявлениям мезенхимальная соединительная ткань.

Изменения в костях при различных патологических процессах бесконечно разнообразны; при каждом отдельном заболевании, в каждой отдельной кости, в каждом отдельном случае патологоанатомическая и патофизиологическая, а следовательно, и рентгенологическая картина имеет свои особенности. Все это громадное разнообразие болезненных явлений сводится, однако, в конечном итоге лишь к некоторым не столь уж многочисленным элементарным качественным и количественным процессам.

Болезнь - это, как известно, не только извращенная арифметическая сумма единичных нормальных явлений, при патологических условиях в целом организме и в отдельных органах и тканях возникают специфические качественные изменения, для которых не существует нормальных прообразов. Глубокий качественный метаморфоз претерпевает и болезненно измененная кость. Надкостница, например, образуя на месте диафизарного перелома мозоль, начинает выполнять новую, в норме ей не свойственную функцию, она вырабатывает хрящевую ткань. Опухоль кости связана с развитием, например, эпителиальных, миксоматозных, гигантоклеточных и других образований, столь же чуждых нормальной кости гистологически, сколь химически для нее необычны отложения холестерина при ксантоматозе или керазина при болезни Гоше. Костный аппарат при рахите или педжетовской перестройке приобретает совершенно новые физические, химические, биологические и прочие качества, для которых в нормальной кости мы не в состоянии подыскать количественные критерии для сравнения.

Но эти качественные свойства, специфические для патологических процессов в костной субстанции, к сожалению, сами по себе не могут быть непосредственно определены рентгенологически, они проявляются на рентгенограммах лишь в виде косвенных, вторичных симптомов. Не в их распознавании и изучении сила рентгенологии. Лишь когда качественно измененная ткань в своей количественной определенности дошла до степени возможного обнаружения, вступает в свои права рентгенологический метод исследования. При помощи безупречных экспериментальных исследований Полина Мек (Mack) доказала, что из различных составных частей костной ткани поглощение рентгеновых лучей происходит на 95% за счет минерального состава (80% лучей задерживается кальцием и 15% - фосфором), и только в пределах до 5% теневое изображение костей обусловлено органическим „мягким” ингредиентом костной ткани. Поэтому в силу самой природы рентгенологического исследования в рентгенодиагностике заболеваний костей и суставов на первый план выступает оценка количественных изменений костной ткани. Нельзя весами измерять расстояние. Рентгенолог при помощи своего исключительно ценного, ’Но все же одностороннего метода в настоящее время еще вынужден ограничиться анализом преимущественно двух основных количественных процессов жизнедеятельности кости, а именно созидания кости и ее разрушения.