Что такое лазерное излучение. Основные принципы и биологические механизмы воздействия лазерного излучения на кожу Воздействие на человека лазерного излучения зависит от

Термин «лазер» («laser») составлен из начальных букв пяти слов «Light amplification by stimulated emission of radiation», что в переводе с английского означает « Усиление света путем его вынужденного излучения». В сущности, лазер представляет собой источник света, в котором путем внешнего освещения достигается возбуждение атомов определенного вещества. И когда эти атомы под воздействием внешнего электромагнитного излучения возвращаются в исходное состояние, происходит вынужденное излучение света.

Принцип действия лазера

Принцип действия лазера сложен. Согласно планетарной модели строения атома, предложенной английским физиком Э.Резерфордом (1871-1937), в атомах различных веществ электроны движутся вокруг ядра по определенным энергетическим орбитам. Каждой орбите соответствует определенное значение энергии электрона. В обычном, невозбужденном, состоянии электроны атома занимают более низкие энергетические уровни. Они способны только поглощать падающее на них излучение. В результате взаимодействия с излучением атом приобретает дополнительное количество энергии, и тогда один или несколько его электронов переходят в отдаленные от ядра орбиты, то есть на более высокие энергетические уровни. В таких случаях говорят, что атом перешел в возбужденное состояние. Поглощение энергии происходит строго определенными порциями - квантами. Избыточное количество энергии, полученное атомом, не может в нем оставаться бесконечно долго - атом стремится избавиться от излишка энергии.

Возбужденный атом при определенных условиях будет отдавать полученную энергию так же строго определенными порциями, в процессе его электроны возвращаются на прежние энергетические уровни. При этом образуются кванты света (фотоны), энергия которых равна разности энергии двух уровней. Происходит самопроизвольное, или спонтанное излучение энергии. Возбужденные атомы способны излучать не только сами по себе, но и под действием падающего на них излучения, при этом излученный квант и квант, «породивший» его, похожи друг на друга. В результате индуцированное (вызванное) имеет ту же длину волны, что и вызвавшая его волна. Вероятность индуцированного излучения будет нарастать при увеличении количества электронов, перешедших на верхние энергетические уровни. Существуют так называемые инверсные системы атомов, где происходит накопление электронов преимущественно на более высоких энергетических уровнях. В них процессы излучения квантов преобладают над процессами поглощения.

Инверсные системы используются при создании оптических квантовых генераторов - лазеров. Подобную активную среду помещают в оптический резонатор, состоящий из двух параллельных высококачественных зеркал, размещенных по обе стороны от активной среды. Кванты излучения, попавшие в эту среду, многократно отражаясь от зеркал бесчисленное количество раз пересекают активную среду. При этом каждый квант вызывает появление одного или нескольких таких же квантов за счет излучения атомов, находящихся на более высоких уровнях.

Рассмотрим принцип работы лазера на кристалле рубина. Рубин - природный минерал кристаллического строения, исключительно твердый (почти как алмаз). Внешние кристаллы рубина очень красивы. Их цвет зависит от содержания хрома имеет различные оттенки: от светло-розового до темно-красного. По химической структуре рубин - окись алюминия с примесью (0,5%) хрома. Атомы хрома - активное вещество рубинового кристалла. Именно они являются усилителями волн видимого света и источником лазерного излучения. Возможное энергетическое состояние ионов хрома можно представить в виде трех уровней (I, II и III). Чтобы активизировать рубин и привести атомы хрома в «рабочее» состояние, на кристалл навивают спиральную лампу - накачку, работающую в импульсном режиме и дающую мощное зеленое излучение света. Эти «зеленые» кванты тотчас поглощаются электронами хрома, находящимися на нижнем энергетическом уровне (I). Возбужденным электронам достаточно поглощенной энергии для перехода на верхний (III) энергетический уровень. Возвратиться в основное состояние электроны атомов хрома могут либо непосредственно с третьего уровня на первый, либо через промежуточный (II) уровень. Вероятность перехода их на второй уровень больше, чем на первый.

Большая часть поглощенной энергии переходит на промежуточный (II) уровень. При наличии достаточного интенсивного возбуждающего излучения представляется возможность получить на втором уровне больше электронов, чем осталось на основном. Если теперь осветить активизированный кристалл рубина слабым красным светом (этот фотон соответствует переходу со II в I основное состояние), то «красные» кванты как бы подтолкнут возбужденные ионы хрома, и они со второго энергетического уровня перейдут на первый. Рубин при этом излучит красный свет. Так как кристалл рубина представляет собой стержень, торцевые поверхности которого изготавливаются в виде двух отражающих зеркал, то отразившись от торцов рубина, «красная» волна вновь пройдет через кристалл и на своем пути всякий раз будет вовлекать в процесс излучения все большее число новых частиц, находящихся на втором энергетическом уровне. Таким образом, в кристалле рубина непрерывно накапливается световая энергия, которая выходит через его границы через одну из торцевых полупрозрачных зеркальных поверхностей в виде испепеляющего красного луча в миллион раз превосходящего по яркости луч Солнца.

Помимо рубина, в качестве активного вещества применят и другие кристаллы, например, твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла), газовые лазеры (активным веществом являются газ - смесь аргона и кислорода, гелия и неона, окись углерода), лазеры на красителях, химические лазеры, полупроводниковые лазеры.

В зависимости от устройства лазера его излучение может происходить в виде молниеносных отдельных импульсов («выстрелов»), либо непрерывно. Поэтому различают лазеры импульсного и непрерывного действия. К первым относится рубиновый лазер, а ко вторым - газовые. Полупроводниковые лазеры могут работать как в импульсном, так и в непрерывном режиме.

Лазерное излучение имеет свои характеристические черты. Это когерентность, монохроматичность и направленность.

Монохроматический - значит одноцветный. Благодаря этому свойству луч лазера представляет собой колебания одной длины волны, например, обычный солнечный свет - это излучение широкого спектра, состоящее из волн различной длины и различного цвета. Лазеры имеют свою, строго определенную длину волны. Излучение гелий-неонового лазера - красное, аргонового - зеленое, гелий кадмиевого - синее, неодимового - невидимое (инфракрасное).

Монохроматичность лазерного света придает ему уникальное свойство. Вызывает недоумение тот факт, что лазерный луч определенной энергии способен пробить стальную пластину, но на коже человека не оставляет почти никакого следа. Это объясняется избирательностью действия лазерного излучения. Цвет лазера вызывает изменения лишь в той среде, которая его поглощает, а степень поглощения зависит от оптических свойств материала. Обычно каждый материал максимально поглощает излучение лишь определенной длины волны.

Избирательное действие лазерных лучей наглядно демонстрирует опыт с двойным воздушным шаром. Если вложить зеленый резиновый шар внутрь шара из бесцветной резины, то получится двойной воздушный шар. При выстреле рубиновым лазером разрывается только внутренняя (зеленая) оболочка шара, которая хорошо поглощает красное лазерное излучение. Прозрачный наружный шар остается целым.

Красный свет рубинового лазера интенсивно поглощается зелеными растениями, разрушая их ткани. Наоборот, зеленое излучение аргонового лазера слабо абсорбируется листьями растений, но активно поглощается красными кровяными тельцами (эритроцитами) и быстро повреждает их.

Второй отличительной чертой лазерного излучения является его когерентность. Когерентность, в переводе с английского языка (coherency), означает связь, согласованность. А это значит, что в различных точках пространства в одно и то же время или в одной и той же точке в различные отрезки времени световые колебания координированы между собой. В обычных световых источниках кванты света выпускаются беспорядочно, хаотически, Несогласованно, то есть некогерентно. В лазере излучение носит вынужденный характер, поэтому генерация фотонов происходит согласованно и по направлению и по фазе. Когерентность лазерного излучения обусловливает его строгую направленность - распространение светового потока узким пучком в пределах очень маленького угла. Для света лазеров угол расходиомсти может быть меньше 0,01 минуты, а это значит, что лазерные лучи распространяются практически параллельно. Если сине-зеленый луч лазера направить на поверхность Луны, которая находится на расстоянии 400000 км. От Земли, то диаметр светового пятна на Луне будет не больше 3 км. То есть на дистанции 130 км. Лазерный луч расходится меньше, чем на 1 м. При использовании телескопов лазерный луч можно было бы увидеть на расстоянии 0,1 светового года (1 световой год =10 в 13 степени км.).

Если мы попробуем сконцентрировать с помощью собирающей линзы свет обыкновенной электролампочки. То не сможем получить точечное пятно. Это связано с тем, что преломляющая способность волн различной длины, из которых состоит свет, различно, и лучи волн с одинаковой длиной собираются в отдельный фокус. Поэтому пятно получается размытым. Уникальное свойство лазерного излучения (монохроматичность и малая расходимость) позволяют с помощью системы линз сфокусировать его на очень малую площадь. Эта площадь может быть уменьшена настолько, что по размерам будет равна длине волны фокусируемого света. Так, для рубинового лазера наименьший диаметр светового пятна составляет примерно 0,7 мкм. Таким образом можно создать чрезвычайно высокую плотность излучения. То есть максимально сконцентрировать энергию. Лазер с энергией в 100 джоулей дает такие же вспышки, как и электрическая лампочка мощность в 100 ватт при горении в течение одних суток. Однако вспышка лазера длится миллионные доли секунды и, следовательно, та же энергия оказывается спрессованной в миллион раз. Вот почему в узком спектральном диапазоне яркость вспышки мощных лазеров может превышать яркость Солнца в биллионы раз. С помощью лазеров можно достигнуть плотности энергии излучения около 10 в 15 степени ватт на метр квадратный, в то время, как плотность излучения Солнца составляет только порядка 10 в 7 степени ватт на метр квадратный. Благодаря такой огромной плотности энергии в месте фокусировки пучка мгновенно испаряется любое вещество.

В процессе изготовления, испытания и эксплуатации лазерных изделий на обслуживающий персонал могут воздействовать физические, химические и психофизиологические опасные и вредные факторы.

К физическим факторам относятся:

  • · Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное);
  • · Высокое напряжение в цепях управления и источниках электропитания лазера (лазерных установок);
  • · Повышенный уровень ультрафиолетовой радиации от импульсных ламп накачки или кварцевых газоразрядных трубок в рабочей зоне;
  • · Повышенная яркость света от импульсных ламп накачки и зоны взаимодействия лазерного излучения с материалом мишени;
  • · Повышенный шум и вибрация на рабочем месте, возникающие при работе лазера (лазерной установки);
  • · Повышенный уровень ионизирующего рентгеновского излучения от газоразрядных трубок и др. элементов, работающих при анодном напряжении более 5 кВ;
  • · Повышенный уровень электромагнитных излучений ВЧ - и СВЧ - диапазонов в рабочей зоне;
  • · Повышенный уровень инфракрасной радиации в рабочей зоне;
  • · Повышенная температура поверхностей оборудования;
  • · Взрывоопасность в системах накачки лазеров;
  • · Возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.

К химическим факторам относятся:

  • · Загрязнение воздуха рабочей зоны продуктами взаимодействия лазерного излучения с мишенью и радиолиза воздуха (озон, окислы азота и др);
  • · Токсические газы и пары от лазерных систем с прокачкой хладагентов и др.

Психофизиологические факторы - это:

  • · Монотония, гипокинезия, эмоциональная напряженность, психологический дискомфорт;
  • · Локальные нагрузки на мышцы и кисти предплечья; напряженность анализаторных функций (зрение, слух).

Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.

Что такое лазер?

Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».

Термин «радиация» часто понимается неправильно, потому что его также используют при описании В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.

Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).

Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.

Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.

Электромагнитный спектр

Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.

Наибольшую частоту имеют и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.

воздействие на человека

Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.

Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.

Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях - помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение - инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Рентгеновские лучи

Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого - мощные с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на в том числе для обеспечения надлежащего экранирования.

Классификация

В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.

Безопасные устройства

Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.

Условно безопасные устройства

Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.

Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.

Опасные лазеры

К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1-5 мВт, некоторые лазерные указатели и строительные уровни.

Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.

Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Защитные очки

При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.

Факторы, которые следует учитывать при выборе защитных очков:

  • длина волны или область спектра излучения;
  • оптическая плотность при определенной длине волны;
  • максимальная освещённость (Вт/см 2) или мощность пучка (Вт);
  • тип лазерной системы;
  • режим мощности - импульсное лазерное излучение или непрерывный режим;
  • возможности отражения - зеркального и диффузного;
  • поле зрения;
  • наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
  • комфорт;
  • наличие вентиляционных отверстий, предотвращающих запотевание;
  • влияние на цветовое зрение;
  • ударопрочность;
  • возможность выполнения необходимых задач.

Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.

Свойства лазерного излучения позволяют применять его в разных сферах жизни человека. В медицине и косметологии лазером лечат большое количество заболеваний и эстетических недостатков.

С помощью скальпеля лазерного типа врач создает бескровные разрезы, что обеспечивается моментальным спаиванием капилляров и кровеносных сосудов. Кроме того, пользуясь подобным инструментарием у специалиста есть возможность видеть всю рабочую зону. Лазерный пучок рассекает кожный покров удаленно, не имея прямого контакта с сосудами и органами.

При этом достигается стерильность. Высокая концентрация лазера дает возможность производить хирургические вмешательства с минимальными показателями травматизации. Больные после таких операций намного быстрее восстанавливаются, то есть трудоспособность возвращается намного быстрее. Кроме того, манипуляции лазерным скальпелем не приносят никакого дискомфорта после операции.

Активное технологическое развитие существенно расширилось возможности использования лазерного излучения. Ученые выявили положительное воздействие и на состояние кожного покрова. По этой причине лазер сегодня часто используют в дерматологии и косметологии.

Реакция и степень поглощения лучей кожным покровом зависят от его типа. Лазерные приборы позволяют регулировать длину волы для каждой отдельной ситуации. Применение:

Одной из самых первых отраслей, где начал активно применяться лазер, является офтальмология. Глазная микрохирургия выделяет следующие направления, при которых используется этот вид облучения:

Помимо всего прочего, лазер применяется и при онкологических патологиях кожного покрова. Очень хорошие результаты он демонстрирует при устранении меланобластомы. В некоторых случаях лазерная технология применяется для терапии рака ЖКТ начальных стадий. Однако лазер не эффективен при наличии метастаз и глубокой локализации злокачественного образования.

Опасность для организма

Негативное влияние лазерного излучения на организм человека уже давным-давно доказано. Облучение бывает отраженным, рассеянным и прямым. Пагубное влияние обусловлено термическими и световыми свойствами лазера. Интенсивность поражения определяется уровнем поглощения тканей, длиной волны и участком, на который направлено воздействие.

Больше остальных частей тела от лазера могут пострадать глазные яблоки. Роговица крайне чувствительна, потому она запросто получает ожоги. Из последствий можно выделить резкое снижение зрительной функции или абсолютную слепоту. Источниками излучения, как правило, являются инфракрасные лазерные излучатели. При поражении хрусталика, роговицы, сетчатки или радужки лазерным лучом могут наблюдаться следующие признаки:

  • спазмы и боли в глазном яблоке;
  • помутнение глазного хрусталика;
  • кровоизлияния и отечность век.

Уязвима и человеческая кожа. В месте ее контакта с лазерным лучом увеличивается температура. Межтканевая и внутриклеточная жидкости начинают быстро закипать и испаряться. На кожном покрове появляется краснота. Через некоторое время на обожженном участке могут возникнуть омертвевшие участки. При мощном воздействии кожа обугливается практически мгновенно. Самый главный признак ожога лазером - строгие контуры поражения, а пузырьки формируются не под эпидермисом, а в нем.

Инфракрасный лазер способен поразить не только кожный покров, но и внутренние органы, так как проникает через ткани. Для глубокого ожога характерна очередность поврежденной и здоровой ткани. В первое время после пагубного воздействия у человека нет никакого дискомфорта и боли. Самым уязвимым внутренним органом считается печень.

Кроме того, влияние лазера на организм человека вызывает расстройства ССС и ЦНС (сердечно-сосудистой и центральной нервной системы соответственно). У пострадавшего при этом могут наблюдаться обильная потливость, замедление сердечного ритма, скачки давления и чувство раздражительности.

Меры защиты и предосторожности

В группу риска входят люди, работа которых предполагает использование квантовых генераторов. Санитарные нормативы разделяют опасность лазерного излучения на четыре класса. Для человеческого организма могут представлять опасность все классы, кроме первого. К техническим вариантам защиты относятся:

  • грамотное обустройство помещений промышленного назначения и правильный выбор внутренней облицовки (лазер не должен отражаться от поверхностей);
  • рациональная установка приборов-излучателей;
  • ограждение участка, который подвергается облучению;
  • соблюдение требований по эксплуатации и обслуживанию лазерных установок.

Другие меры защиты - индивидуальные. Она предполагает применение защитных очков, спецодежды, экранов, кожухов, призм и линз.

Бытовое применение лазера тоже может представлять опасность для человеческого организма. Несоблюдение инструкции может привести к очень печальным последствиям. Защита в этом случае предполагает следующие рекомендации:

Лазер может иметь механическое, фотохимическое, энергетическое или тепловое воздействие. Это зависит от типа используемого излучателя. Самым опасным считается прямое лазерное излучение, так как он имеет максимальную интенсивность. Думая о том, вреден ли лазер для здоровья, следует запомнить, что нерациональное использование самодельных лазерных устройств, фонариков или световых указов может причинить вред не только владельцу, но и окружающим.

Действие лазеров на организм зависит от параметров излучения (мощности и энергии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверхности), локализации воздействия и от анатомо-физиологических особенностей облучаемых объектов.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения, функционального характера (вторичные эффекты).

Биологические эффекты, возникающие при воздействии лазерного излучения на организм, зависят от энергетической экспозиции в импульсе или энергетической освещенности, длины волны излучения, длительности импульса, частоты повторения импульсов, экспозиции воздействия и площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов.

Лазерное излучение способно вызывать первичные эффекты, к которым относятся органические изменения, возникающие непосредственно в облучаемых тканях, и вторичные эффекты - неспецифические изменения, возникающие в организме в ответ на облучение.

Термический эффект импульсных лазеров большой интенсивности имеет специфические особенности. При действии излучения импульсного лазера в облучаемых тканях происходит быстрый нагрев структур. Причем, если излучение соответствует режиму свободной генерации, то за время импульса (длительность в пределах 1 мс) тепловая энергия вызывает термический ожог тканей. Лазеры, работающие в режиме модулированной добротности (с укороченным импульсом), излучают энергию за весьма короткое время (длительность импульса 1*10 -7 – 1*10 -12 с).

В результате быстрого нагрева структур до высоких температур происходит резкое повышение давления в облучаемых тканевых элементах, что приводит к механическому повреждению тканей. Например, в момент воздействия на глаз или на кожу импульс излучения субъективно ощущается как точечный удар. С увеличением энергии в импульсе излучения ударная волна возрастает.

Таким образом, лазерное излучение приводит к сочетанному термическому и механическому действию.

Влияние излучения лазера орган зрения. Эффект воздействия лазерного излучения на орган зрения в значительной степени зависит от длины волны и локализации воздействия. Выраженность морфологических изменений и клиническая картина расстройств функций зрения может быть от полной потери зрения (слепота) до инструментально выявляемых функциональных нарушений.

Лазерное излучение видимой и ближней ИК области спектра при попадании в орган зрения достигает сетчатки, а излучение ультрафиолетовой и дальней ИК областей спектра поглощается конъюнктивой, роговицей, хрусталиком.

Действие лазерного излучения на кожу. При применении лазеров большой, мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов. Характер повреждений кожи или слизистых оболочек варьирует от легкой гиперемии до различной степени ожогов, вплоть до грубых патологических изменений типа некроза.

Различают 4 степени поражения кожи лазерным излучением:

I степень – ожоги эпидермиса: эритема, десквамация эпителия;

II – ожоги дермы: пузыри, деструкция поверхностных слоев дермы;

III - ожоги дермы: деструкция дермы до глубоких слоев;

IV - деструкция всей толщи кожи, подкожной клетчатки и подлежащих слоев

Действие лазерных излучений наряду с морфофункциональными изменениями тканей непосредственно в месте облучения вызывает разнообразные функциональные сдвиги в организме. В частности, развиваются изменения в центральной нервной, сердечно-сосудистой, эндокринной системах, которые могут приводить к нарушению здоровья. Биологический эффект воздействия лазерного излучения усиливается при неоднократных воздействиях и при комбинациях с другими факторами производственной среды.

37. УФ-излучение

Ультрафиолетовое (УФ) излучение представляет собой невидимое глазом электромагнитное излучение, занимающее в электромагнитном спектре промежуточное положение между светом и рентгеновским излучением.

Биологически активная часть УФ излучения делится на 3 части: спектральная область – А с длиной волны 400 - 315 нм, область В с длиной волны 315 - 280 нм и С - 280 – 200 нм. УФ-излучение более короткого диапазона (от 180 нм и ниже) сильно поглощается всеми материалами и средами, в том числе и воздухом, а потому может иметь место только в условиях вакуума.

УФ-лучи обладают способностью вызывать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминесценцию и обладают.значительной биологической активностью. При этом УФ-лучи области А отличаются сравнительно слабым биологическим действием, возбуждают флюоресценцию органических соединений. Лучи области В обладают сильным эритемным и антирахитическим действием, а лучи области С активно действуют на тканевые белки и липиды, вызывают гемолиз и обладают выраженным антирахитическим действием.

Нормируемой величиной искусственного УФ-облучения является количество эритемного облучения, определяемое произведением эритемной облученности на время облучения. Эта величина аналогична освещенности и определяется плотностью эритемного потока.

Эритемный поток (Ф эр) – мощность эритемного излучения - представляет собой величину, характеризующую эффективность УФ-излучения по его полезному воздействию на человека и животных.

Производственные источники УФ-излучения

Наиболее распространенными искусственными источниками УФ-излучения на производстве являются электрические дуги, ртутно-кварцевые горелки, автогенное пламя. Все источники УФ-излучения принадлежат к так называемым температурным излучателям.

В условиях производства УФ-облучению подвергаются рабочие, занятые электросваркой, автогенной резкой и сваркой металла, плазменной резкой и сваркой, дефектоскопией; технический и медицинский персонал, работающий с ртутно-кварцевыми лампами при светокопировании, стерилизации воды и продуктов, персонал физиотерапевтических кабинетов; рабочие, занятые плавкой металлов и минералов с высокой температурой плавления на электрических, диабазовых, стекольных и других печах; рабочие, занятые производством ртутных выпрямителей; испытатели изоляторов и др. Сельскохозяйственные, строительные, дорожные рабочие и другие профессиональные группы подвергаются действию ультрафиолетового излучения солнечного спектра, особенно в осенне-летний период года.

Биологическое действие

Биологическое действие УФ-лучей солнечного света проявляется прежде всего в их положительном влиянии на организм человека. УФ-облучение - жизненно необходимый фактор. Известно, что при длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается своеобразный симптомокомплекс, именуемый «световое голодание».

Наиболее часто следствием недостатка солнечного света являются авитаминоз D, ослабление защитных иммунобиологических реакций организма, обострение хронических заболеваний, функциональные расстройства нервной системы.

К контингентам, испытывающим «световое голодание» организма или «ультрафиолетовую недостаточность», относятся рабочие шахт и рудников, люди, работающие в бесфонарных и безоконных цехах и на ряде других объектов, не имеющих естественного освещения, таких, как машинные отделения, метрополитен и др., а также работающие на Крайнем Севере.

УФ-облучение субэритемными и малыми эритемными дозами оказывает благоприятное стимулирующее действие на организм. Происходит повышение тонуса гипофизарно-надпочечниковой и симпатоадреналовой систем, активности митохондриальных и микросомальных ферментов и уровня неспецифического иммунитета, увеличивается секреция ряда гормонов. Наблюдается нормализация артериального давления, снижается уровень холестерина сыворотки, снижается проницаемость капилляров, повышается фагоцитарная активность лейкоцитов, увеличивается содержание сульфгидрильных групп; нормализуются все виды обмена.

Установлено, что под воздействием УФ-излучения наблюдается более интенсивное выведение химических веществ (марганца, ртути, свинца) из организма и уменьшение их токсического действия. Повышается сопротивляемость организма, снижается заболеваемость, в частности простудными заболеваниями, повышается устойчивость к охлаждению, снижается утомляемость, повышается работоспособность.

В целях профилактики «ультрафиолетового дефицита» используется как солнечное излучение - инсоляция помещений, световоздушные ванны, солярии, а также и УФ-облучение искусственными источниками.

Мероприятия по предупреждению «ультрафиолетовой недостаточности» в нашей стране закреплены санитарным законодательством.

Производственные помещения с постоянным пребыванием работающих, в которых естественное освещение отсутствует или недостаточно по биологическому действию, по требованию санитарных нормативов следует оборудовать установками искусственного УФ-излучения (с эритемными лампами). УФ-облучение рабочих может быть выполнено с помощью установок общего эритемного облучения, размещенных непосредственно в цехе, где работающие получают необходимую дозу облучения в течение рабочей смены, либо УФ-облучение рабочих производится в фотариях в течение 3 - 5 мин с использованием высоких уровней облучения.

УФ-излучение от производственных источников, в первую очередь электросварочных дуг, может стать причиной острых и хронических профессиональных поражений.

Наиболее подвержен действию УФ излучения зрительный анализатор.

Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острый коньюктивит или кератоконьюктивит. Заболеванию предшествует латентный период, продолжительность которого чаще всего составляет 12 ч. Проявляется заболевание ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением, блефароспазмом. Нередко обнаруживается эритема кожи лица и век. Заболевание длится до 2 - 3 сут.

Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и других работах.

С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Кожные поражения протекают в виде острых дерматитов с эритемой, иногда отёком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепсическими явлениями. В дальнейшем наступают гиперпигментация и шелушение. Классическим примером поражения кожи, вызванного УФ-излучением, служит солнечный ожог.

Хронические изменения кожных покровов, вызванные УФ-излучением, выражаются в «старении» (солнечный эластоз), развитии кератоза, атрофии эпидермиса, возможно развитие злокачественных новообразований.

Для защиты кожи от УФ-излучения используются защитная одежда, противосолнечные экраны (навесы и т.п.), специальные покровные кремы.

Еще в далеком 1917 году ученый А. Эйнштейн выдвинул гениальное предположение о том, что атомы способны излучать индуцированные световые волны. Однако нашло это предположение подтверждение лишь спустя почти полвека в то время, как советскими учеными Н. Г. Басовым и А. М. Прохоровым было начато создание квантовых генераторов.

Из первых букв английского названия этого устройства была составлена аббревиатура – лазер, следовательно, излучаемый им свет – лазерным. Встречается ли среднестатистический человек с лазером в повседневной жизни?

Современность дает возможность повсеместно наблюдать за прекрасными танцующими световыми лучами, исходящими от лазера.

Их активно применяют для создания световых шоу, а также в косметологии, медицине и технике. Именно поэтому в наши дни так активно применяются лазерные технологии для эстрадных представлений и производства всевозможных гаджетов.

Но вдруг лазерный свет вреден для человека? Именно этот вопрос мы сегодня и подымем. Но дня начала нужно перенестись в школьные годы и вспомнить о лазерных световых квантах.

В природе источником света являются атомы. Лазерный луч – не исключение, однако он рождается в результате немного отличных материальных процессах и при условии, что существует наружное влияние электромагнитного поля. На основе этого можно сказать, что лазерный свет – это вынужденное явление, то есть простимулированное.

Лучи лазерного света распространяются практически параллельно по отношению друг друга, поэтому они имеют мизерный угол рассеивания и способны интенсивно влиять на облучаемую поверхность.

Чем же тогда лазер отличается от привычной (также созданной руками людей) лампочки накаливания? В отличие от лазера, у лампы спектр рассеивания составляет практически 360 о, в то время, как пучок от лазера имеет узкую направленность.

В силу того, что квантовые генераторы плотно обосновались в жизни современного человека, ученых всерьез обеспокоил вопрос, нет ли негативного влияния от такого «соседства». В ходе проведения многих опытов им удалось добиться больших результатов и выяснить, что лазерный луч обладает особыми свойствами:

  • во время работы лазерной установки можно получить негативные последствия напрямую (из самого аппарата), от рассеянного света или отраженного от других поверхностей;
  • от того, на какую ткань воздействует лазер, а также от параметров его волны будет зависеть степень воздействия;
  • поглощаемая любыми тканями энергия может оказывать тепловой, световой или любой другой отрицательный эффект.

Если лазер воздействует на биологическую ткань, то последовательность поражающих результатов выглядит примерно так:

  • быстрое поднятие температуры и проявления признаков ожога;
  • межтканевая и клеточная жидкость закипает;
  • в результате вскипания образовывается пар под высоким давлением, который ищет выход и взрывает соседние ткани.

Если дозы облучения маленькие или средние, то можно отделаться ожогами кожных покровов. Но при сильном облучении кожа приобретает отечный и омертвевший вид. А внутренние органы получают сильнейшие травмы. Самую большую опасность представляют прямые и зеркально отраженные лучи, которые негативно сказываются на работе важнейших органов и их систем.

Отдельного внимания заслуживает тема влияния лазера на зрительные органы.

ВАЖНО! Импульсные короткие вспышки лазера могут привести к очень сильным поражениям сетчатки, радужки и хрусталика глаза.

На это есть 3 причины:

  1. Короткий лазерный импульс длиться 0,1 секунды и за это время просто не успевает сработать защита зрения – мигательный рефлекс.
  2. Роговая оболочка и хрусталик – это чрезвычайно восприимчивые органы, которые легко повредить.
  3. Поскольку глаз сам по себе – это целая оптическая система, то она и сама вносить вклад в собственное разрушение при попадании лазера. Она фокусирует луч на глазном дне и заламывает на сетчатку. Тут луч поражает хрупкие сосудики этого органа, вызывая их закупорку. Отсутствие болевых рецепторов позволяет даже не ощутить, что определенный участок на сетчатке уже поражен до тех пор, пока некоторые предметы просто не будет видны, находясь в поле зрения.

Лишь по пришествии некоторого времени начинается отечность век, боль в глазах, судорожные сокращения и кровоизлияние на сетчатке. К слову, клетки последней не регенерируются.

ВАЖНО! Излучение, в результате которого может повредиться зрение, имеет низкий уровень. А вот для повреждения кожи достаточно излучения высокой интенсивности. Инфракрасные лазеры или любые источники света видимого спектра, мощность которых превышает 5 мвт – это потенциально опасно.

Прекрасные изобретатели по всему земному шару во время своих изобретений квантовых генераторов даже и предположить не могли, какую популярность приобретут их детища в скором времени. Однако такое всеобщее признание требует знаний, какой длины волны применять для той или иной операции.

Что же влияет на длину лазерной волны? Поскольку лазер – рукотворное устройство, то и природа его волн будет определена механическим строением генерируемого луч прибора. Лазеры могут быть твердотельными и газовыми.

Чудо-свет одновременно может находится в диапазоне от 30 до 180 мкм и быть частью ультрафиолетового, видимого (чаще красного) или инфракрасного участка спектра.

Но именно длина волны во многом влияет на характер воздействия этого света на человеческое тело. Так, красный свет менее чувствителен для нашего глаза нежели зелены. То есть наше веко сомкнется при виде зеленого пучка света, поэтому он является менее опасным, чем тот же красный.

Защита от лазерного излучения на производстве

На производстве, где применяются квантовые генераторы прямо или косвенно задействовано огромное количество людей. Для таких сотрудников разработаны четкие предписания, регулирующие степень личной защиты от излучения, потому как любая лазерная установка представляет потенциальную опасность для тех или иных органов тела.

Изготовители подобных установок обязаны указать, к какому их 4-х классов опасности относится данный прибор. Наибольшую угрозу являют лазеры 2,3 и 4 категории.

К общественным средствам защиты на производстве относятся защитные экраны и кожухи, камеры наблюдения, светодиодные индикаторы, сигнализации или ограждения, устанавливаемые в зонах с повышенным уровнем опасности излучения.

Индивидуальные методы предохранения включают специальные комплекты одежды и очки с нанесенным покрытием от лазерного луча.

ВАЖНО! Своевременно обследование в больнице и соблюдение всех предписанных на производстве мер защиты – это лучшие профилактические методы защиты от волн.

В нашем быту наблюдается бесконтрольное применение самодельный лазерных приборов, установок, лазерных указок и светильников. Чтобы избежать неприятных последствий стоит четко соблюдать правила их использования:

  • только в местах, где нет посторонних людей можно «играться» лазерами;
  • большую опасность, чем прямой луч, несут отраженные от стекла или другого зеркального предмета световые волны;
  • даже самый «безобидный» луч с невысокой интенсивностью при попадании в подле зрения водителя, пилота или спортсмена может привести к трагическим последствиям;
  • лазерные приспособления нужно беречь от использования детьми и подростками;
  • при низком положении облаков можно направлять пучки света в небо, дабы избежать попадания света в воздушный транспорт;
  • категорически запрещено смотреть в объектив на источник света;
  • при ношении защитных очков важно контролировать степень их защиты от разных по длине лучей.

Современные квантовые генераторы и лазерные устройства, встречающиеся в быту – это реальная угроза для их обладателей и окружающих. Защитить себя или близких поможет лишь строгое соблюдение всех мер предосторожности. Только тогда можно насладиться поистине завораживающим зрелищем.