Соединения меди. Решения Медь растворили в концентрированной азотной кислоте

CuCl 2 + 4NH 3 = Cl 2

Na 2 + 4HCl = 2NaCl + CuCl 2 + 4H 2 O

2Cl + К 2 S = Cu 2 S + 2KCl + 4NH 3

При смешивании растворов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

2CuSO 4 + Na 2 SO 3 + 2H 2 O = Cu 2 O + Na 2 SO 4 + 2H 2 SO 4

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 ↓ + 2Na 2 SO 4 + CO 2

Медь и соединения меди.

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной азотной кислоте. Образовавшийся при этом газ собрали и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили через раствор гидроксида бария. Напишите уравнения описанных реакций.

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.



7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.



12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

17)Крастворухлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

18)Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

19)Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

20)Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

21) Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

22)Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Поученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

24) Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

27) Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

Медь. Соединения меди.

1. CuCl 2 Cu + Сl 2

на катоде на аноде

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

6NaOH (гор.) + 3Cl 2 = NaClO 3 + 5NaCl + 3H 2 O

2. CuCl 2 Cu + Сl 2

на катоде на аноде

CuS + 8HNO 3(конц. гор.) = CuSO 4 + 8NO 2 + 4H 2 O

или CuS + 10HNO 3(конц.) = Cu(NO 3) 2 + H 2 SO 4 + 8NO 2 + 4H 2 O

4NO 2 + 2Ba(OH) 2 = Ba(NO 3) 2 + Ba(NO 2) 2 + 2H 2 O

3. NaNO 3(тв.) + H 2 SO 4(конц.) = HNO 3 + NaHSO 4

Cu + 4HNO 3(конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

2NaNO 3 2NaNO 2 + O 2

4. Cu(NO 3) 2 + 2NaOH = Cu(OH) 2 ↓ + 2NaNO 3

Cu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

CuO + 2HNO 3 = Cu(NO 3) 2 + H 2 O

5. 3Cu + 8HNO 3(разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

Cu(NO 3) 2 + 2КOH = Cu(OH) 2 ↓ + 2КNO 3

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

CuO + C Cu + CO

6. Hg(NO 3) 2 + Cu = Cu(NO 3) 2 + Hg

Cu(NO 3) 2 + 2NaOH = Cu(OH) 2 ↓ + 2NaNO 3

(OH) 2 + 5H 2 SO 4 = CuSO 4 + 4NH 4 HSO 4 + 2H 2 O

7. Cu 2 O + 6HNO 3(конц.) = 2Cu(NO 3) 2 + 2NO 2 + 3H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

4NO 2 + O 2 + 2H 2 O = 4HNO 3

10HNO 3 + 4Mg = 4Mg(NO 3) 2 + N 2 O + 5H 2 O

8. (CuOH) 2 CO 3 2CuO + CO 2 + H 2 O

CuO + H 2 Cu + H 2 O

CuSO 4 + Cu + 2NaCl = 2CuCl↓ + Na 2 SO 4

9. 3Cu + 8HNO 3(разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

на катоде на аноде

2Na + O 2 = Na 2 O 2

2Na 2 O 2 + CO 2 = 2Na 2 CO 3 + O 2

10. (CuOH) 2 CO 3 2CuO + CO 2 + H 2 O

CuO + 2HNO 3 Cu(NO 3) 2 + H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

11. CuO + H 2 SO 4 CuSO 4 + H 2 O

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Cu(OH) 2 CuO + H 2 O

CuO + H 2 Cu + H 2 O

12. Cu + Cl 2 CuCl 2

CuCl 2 + 2NaOH = Cu(OH) 2 ↓ + 2NaCl

Cu(OH) 2 CuO + H 2 O

CuO + C Cu + CO

13. Cu + 4HNO 3(конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

4NO 2 + O 2 + 2H 2 O = 4HNO 3

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

CuO + H 2 Cu + H 2 O

14. 2Cu + O 2 = 2CuO

CuSO 4 + NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Сu(OH) 2 + 4(NH 3 · H 2 O) = (OH) 2 + 4H 2 O

15. СuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Cu(OH) 2 CuO + H 2 O

CuO + C Cu + CO

Cu + 2H 2 SO 4(конц.) = CuSO 4 + SO 2 + 2H 2 O

16) 2Cu + I 2 = 2CuI

2CuI + 4H 2 SO 4 2CuSO 4 + I 2 + 2SO 2 + 4H 2 O

Cu(OH) 2 CuO + H 2 O

17) 2CuCl 2 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 4NaCl

(CuOH) 2 CO 3 2CuO + CO 2 + H 2 O

CuO + H 2 Cu + H 2 O

3Cu + 8HNO 3(разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

18) 3Cu + 8HNO 3(разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

(OH) 2 + 3H 2 SO 4 = CuSO 4 + 2(NH 4) 2 SO 4 + 2H 2 O

19) Cu + 4HNO 3(конц.) = Cu(NO 3) 2 + 2NO + 2H 2 O

Сu(NO 3) 2 + 2NH 3 · H 2 O = Cu(OH) 2 ↓ + 2NH 4 NO 3

Cu(OH) 2 + 4NH 3 · H 2 O = (OH) 2 + 4H 2 O

(OH) 2 + 6HCl = CuCl 2 + 4NH 4 Cl + 2H 2 O

20) Fe + 2HCl = FeCl 2 + H 2

CuO + H 2 = Cu + H 2 O

Cu + 4HNO 3(конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

2Cu(NO 3) 2 + 2H 2 O 2Cu + O 2 + 4HNO 3

21) I 2 + 10HNO 3 = 2HIO 3 + 10NO 2 + 4H 2 O

4NO 2 + 2H 2 O + O 2 = 4HNO 3

Cu(OH) 2 + 2HNO 3 Cu(NO 3) 2 + 2H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

22) Cu 2 O + 3H 2 SO 4 = 2CuSO 4 + SO 2 + 3H 2 O

СuSO 4 + 2KOH = Cu(OH) 2 + K 2 SO 4

Cu(OH) 2 CuO + H 2 O

3CuO + 2NH 3 3Cu + N 2 + 3H 2 O

23) CuO + H 2 SO 4 = CuSO 4 + H 2 O

4NO 2 + O 2 + 2H 2 O = 4HNO 3

10HNO 3 + 4Mg = 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

24) CuO + CO Cu + CO 2

Cu + Cl 2 = CuCl 2

2CuCl 2 + 2KI = 2CuCl↓ + I 2 + 2KCl

CuCl 2 + 2AgNO 3 = 2AgCl↓ + Cu(NO 3) 2

25) 2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

CuO + H 2 SO 4 = CuSO 4 + H 2 O

2CuSO 4 + 2H 2 O 2Cu + O 2 + 2H 2 SO 4

Cu + 4HNO 3(конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

26) H 2 C 2 O 4 CO + CO 2 + H 2 O

CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O

2Cu(NO 3) 2 2CuO + 4NO 2 + O 2

CuO + CO Cu + CO 2

27) Cu + 2H 2 SO 4(конц.) = CuSO 4 + SO 2 + 2H 2 O

SO 2 + 2KOH = K 2 SO 3 + H 2 O

СuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Cu(OH) 2 + 2HCl CuCl 2 + 2H 2 O

Марганец. Соединения марганца.

I. Mарганец.

На воздухе марганец покрывается оксидной пленкой, предохраняющей его даже при нагревании от дальнейшего окисления, но в мелкораздробленном состоянии (порошок) он окисляется довольно легко. Марганец взаимодействует с серой, галогенами, азотом, фосфором, углеродом, кремнием, бором, образуя соединения со степенью +2:

3Mn + 2P = Mn 3 P 2

3Mn + N 2 = Mn 3 N 2

Mn + Cl 2 = MnCl 2

2Mn + Si = Mn 2 Si

При взаимодействии с кислородом марганец образует оксид марганца (IV):

Mn + O 2 = MnO 2


4Mn + 3O 2 = 2Mn 2 O 3

2Mn + O 2 = 2MnO

При нагревании марганец взаимодействует с водой:

Mn+ 2H 2 O (пар) Mn(OH) 2 + H 2

В электрохимическом ряду напряжений марганец находится до водорода, поэтому легко растворяется в кислотах, образуя соли марганца (II):

Mn + H 2 SO 4 = MnSO 4 + H 2

Mn + 2HCl = MnCl 2 + H 2

С концентрированной серной кислотой марганец реагирует при нагревании:

Mn + 2H 2 SO 4(конц.) MnSO 4 + SO 2 + 2H 2 O

С азотной кислотой при обычных условиях:

Mn + 4HNO 3 (конц.) = Mn(NO 3) 2 + 2NO 2 + 2H 2 O

3Mn + 8HNO 3 (разб..) = 3Mn(NO 3) 2 + 2NO + 4H 2 O

Растворы щелочей на марганец практически не действуют, но он реагирует с щелочными расплавами окислителей, образуя манганаты (VI)

Mn + KClO 3 + 2KOH K 2 MnO 4 + KCl + H 2 O

Марганец может восстанавливать оксиды многих металлов.

3Mn + Fe 2 O 3 = 3MnO + 2Fe

5Mn + Nb 2 O 5 = 5MnO + 2Nb

II. Соединения марганца (II, IV, VII)

1) Оксиды.

Марганец образует ряд оксидов, кислотно-основные свойства которых зависят от степени окисления марганца.

Mn +2 O Mn +4 O 2 Mn 2 +7 O 7

основный амфотерный кислотный

Оксид марганца (II)

Оксид марганца (II) получают восстановлением других оксидов марганца водородом или оксидом углерода (II):

MnO 2 + Н 2 MnO + H 2 O

MnO 2 + CO MnO + CO 2

Основные свойства оксида марганца (II) проявляются в их взаимодействии с кислотами и кислотными оксидами:

MnO + 2HCl = MnCl 2 + H 2 O

MnO + SiO 2 = MnSiO 3

MnO + N 2 O 5 = Mn(NO 3) 2


MnO + Н 2 = Mn + H 2 O

3MnO + 2Al = 2Mn + Al 2 O 3

2MnO + O 2 = 2MnO 2

3MnO + 2KClO 3 + 6KOH = 3K 2 MnO 4 + 2KCl + 3H 2 O

Как и все d-элементы, ярко окрашены.

Так же как у у меди наблюдается провал электронов — с s-орбитали на d-орбиталь

Электронное строение атома:

Соответственно, существуют 2 характерные степени окисления меди: +2 и +1.

Простое вещество: металл золотисто-розового цвета.

Оксиды меди: Сu2O оксид меди (I) \ оксид меди 1 — красно-оранжевого цвета

СuO оксид меди (II) \ оксид меди 2 — черного цвета.

Другие соединения меди Cu(I), кроме оксида, неустойчивы.

Соединения меди Cu(II) — во-первых, стабильны, во-вторых, голубого или зеленоватого цвета.

Почему зеленеют медные монеты? Медь в присутствии воды взаимодействует с углекислым газом воздуха, образуется СuCO3 — вещество зеленого цвета.

Еще одно окрашенное соединение меди — сульфид меди (II) — осадок черного цвета.

Медь, в отличие от других элементов, стоит в после водорода, поэтому не выделяет его из кислот:

  • с горячей серной кислотой: Сu + 2H2SO4 = CuSO4 + SO2 + 2H2O
  • с холодной серной кислотой: Сu + H2SO4 = CuO + SO2 + H2O
  • с концентрированной :
    Cu + 4HNO3 = Cu(NO3)2 + 4NO2 + 4H2O
  • с разбавленной азотной кислотой:
    3Cu + 8HNO3 = 3 Cu(NO3)2 + 2NO +4 H2O

Пример задачи ЕГЭ С2 вариант 1:

Нитрат меди прокалили, полученный твёрдый осадок растворили в серной кислоте. Через раствор пропустили сероводород, полученный чёрный осадок подвергли обжигу, а твёрдый остаток растворили при нагревании в азотной кислоте.

2Сu(NO3)2 → 2CuO↓ +4 NO2 + O2

Твердый осадок — оксид меди (II).

CuO + H2S → CuS↓ + H2O

Сульфид меди (II) — осадок черного цвета.

«Подвергли обжигу» — значит, произошло взаимодействие с кислородом. Не путайте с «прокаливанием». Прокалить — нагреть, естественно, при высокой температуре.

2СuS + 3O2 = 2CuO + 2SO2

Твердый остаток — это СuO — если сульфид меди прореагировал полностью, СuO + CuS — если частично.

СuO + 2HNO3 = Cu(NO3)2 + H2O

CuS + 2HNO3 = Cu(NO3)2 + H2S

возможна так же другая реакция:

СuS + 8HNO3 = Cu(NO3)2 + SO2 + 6NO2 + 4H2O

Пример задачи ЕГЭ С2 вариант 2:

Медь растворили в концентрированной азотной кислоте, полученный газ смешали с кислородом и растворили в воде. В полученном растворе растворили оксид цинка, затем к раствору прибавили большой избыток раствора гидроксида натрия.

В результате реакции с азотной кислотой образуется Сu(NO3)2, NO2 и O2.

NO2 смешали с кислородом — значит, окислили: 2NO2 + 5O2 = 2N2O5. Cмешали с водой: N2O5 + H2O = 2HNO3.

ZnO + 2HNO3 = Zn(NO3)2 + 2H2O

Zn(NO 3) 2 + 4NaOH = Na 2 + 2NaNO 3

1 . Натрий сожгли в избытке кислорода, полученное кристаллическое вещество поместили в стеклянную трубку и пропустили через нее углекислый газ. Газ, выходящий из трубки, собрали и сожгли в его атмосфере фосфор. Полученное вещество нейтрализовали избытком раствора гидроксида натрия.

1) 2Na + O 2 = Na 2 O 2

2) 2Na 2 O 2 + 2CO 2 = 2Na 2 CO 3 + O 2

3) 4P + 5O 2 = 2P 2 O 5

4) P 2 O 5 + 6 NaOH = 2Na 3 PO 4 + 3H 2 O

2. Карбид алюминия обработали соляной кислотой. Выделившийся газ сожгли, продукты сгорания пропустили через известковую воду до образования белого осадка, дальнейшее пропускание продуктов сгорания в полученную взвесь привело к растворению осадка.

1) Al 4 C 3 + 12HCl = 3CH 4 + 4AlCl 3

2) CH 4 + 2O 2 = CO 2 + 2H 2 O

3) CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O

4) CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2

3. Пирит подвергли обжигу, полученный газ с резким запахом пропустили через сероводородную кислоту. Образовавшийся желтоватый осадок отфильтровали, просушили, смешали с концентрированной азотной кислотой и нагрели. Полученный раствор дает осадок с нитратом бария.

1) 4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2) SO 2 + 2H 2 S = 3S + 2H 2 O

3) S+ 6HNO 3 = H 2 SO 4 + 6NO 2 +2H 2 O

4) H 2 SO 4 + Ba(NO 3) 2 = BaSO 4 ↓ + 2 HNO 3

4 . Медь поместили в концентрированную азотную кислоту, полученную соль выделили из раствора, высушили и прокалили. Твёрдый продукт реакции смешали с медной стружкой и прокалили в атмосфере инертного газа. Полученное вещество растворили в аммиачной воде.

1) Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 +2H 2 O

2) 2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

3) Cu + CuO = Cu 2 O

4) Cu 2 O + 4NH 3 + H 2 O = 2OH

5 . Железные опилки растворили в разбавленной серной кислоте, полученный раствор обработали избытком раствора гидроксида натрия. Образовавшийся осадок профильтровали и оставили на воздухе до тех пор, пока он не приобрёл бурую окраску. Бурое вещество прокалили до постоянной массы.

1) Fe + H 2 SO 4 = FeSO 4 + H 2

2) FeSO 4 + 2NaOH= Fe(OH) 2 + Na 2 SO 4

3) 4Fe(OH) 2 + 2H 2 O + O 2 = 4Fe(OH) 3

4) 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

6 . Сульфид цинка подвергли обжигу. Полученное твердое вещество полностью прореагировало с раствором гидроксида калия. Через полученный раствор пропустили углекислый газ до выпадения осадка. Осадок растворили в соляной кислоте.

1) 2ZnS + 3O 2 = 2ZnO + 2SO 2

2) ZnO + 2NaOH + H 2 O = Na 2

3 Na 2 + CO 2 = Na 2 CO 3 + H 2 O + Zn(OH) 2

4) Zn(OH) 2 + 2 HCl = ZnCl 2 + 2H 2 O

7. Газ, выделившийся при взаимодействии цинка с соляной кислотой, смешали с хлором и взорвали. Полученный при этом газообразный продукт растворили в воде и подействовали им на диоксид марганца. Образовавшийся газ пропустили через горячий раствор гидроксида калия.



1) Zn+ 2HCl = ZnCl 2 + H 2

2) Cl 2 + H 2 = 2HCl

3) 4HCl + MnO 2 = MnCl 2 + 2H 2 O + Cl 2

4) 3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

8. Фосфид кальция обработали соляной кислотой. Выделившийся газ сожгли в закрытом сосуде, продукт горения полностью нейтрализовали раствором гидроксида калия. К полученному раствору прилили раствор нитрата серебра.

1) Ca 3 P 2 + 6HCl = 3CaCl 2 + 2PH 3

2) PH 3 + 2O 2 = H 3 PO 4

3) H 3 PO 4 + 3KOH = K 3 PO 4 + 3H 2 O

4) K 3 PO 4 + 3AgNO 3 = 3KNO 3 + Ag 3 PO 4

9 . Дихромат аммония разложили при нагревании. Твёрдый продукт разложения растворили в серной кислоте. К полученному раствору прилили раствор гидроксида натрия до выпадения осадка. При дальнейшем приливании гидроксида натрия к осадку, он растворился.

1) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O

2) Cr 2 O 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2 O

3) Cr 2 (SO 4) 3 + 6NaOH = 3Na 2 SO 4 + 2Cr(OH) 3

4) 2Cr(OH) 3 + 3NaOH = Na 3

10 . Ортофорсфат кальция прокалили с углем и речным песком. Образовавшееся при этом белое светящееся в темноте вещество сожгли в атмосфере хлора. Продукт этой реакции растворили в избытке гидроксида калия. К полученной смеси прилили раствор гидроксида бария.

1) Ca 3 (PO 4) 2 + 5C + 3SiO 2 = 3CaSiO 3 + 5CO + 2P

2) 2P + 5Cl 2 = 2PCl 5

3) PCl 5 + 8KOH = K 3 PO 4 + 5KCl + 4H 2 O

4) 2K 3 PO 4 + 3Ba(OH) 2 = Ba 3 (PO 4) 2 + 6KOH

11. Алюминиевый порошок смешали с серой и нагрели. Полученное вещество поместили в воду. Образовавшийся осадок разделили на две части. К одной части прилили соляную кислоту, к другой – раствор гидроксида натрия до полного растворения осадка.

1) 2Al + 3S = Al 2 S 3

2) Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

3) Al(OH) 3 + 3HCl= AlCl 3 + 3H 2 O

4) Al(OH) 3 + NaOH = Na

12 . Кремний поместили в раствор гидроксида калия, после окончания реакции к полученному раствору прилили избыток соляной кислоты. Выпавший осадок отфильтровали, просушили и прокалили. Твёрдый продукт прокаливания реагирует с фтороводородом.

1) Si + 2KOH + H 2 O = K 2 SiO 3 + 2H 2

2) K 2 SiO 3 + 2HCl = 2KCl + H 2 SiO 3

3) H 2 SiO 3 = SiO 2 + H 2 O

4) SiO 2 + 4HF = SiF 4 + 2H 2 O

Задания для самостоятельного решения.

1. В результате термического разложения дихромата аммония получили газ, который пропустили над нагретым магнием. Образовавшееся вещество поместили в воду. Образовавшийся при этом газ пропустили через свежеосажденный гидроксид меди(II). Напишите уравнения описанных реакций.

2. К раствору, полученному в результате взаимодействия пероксида натрия c водой при нагревании, добавили раствор соляной кислоты до окончания реакции. Раствор образовавшейся соли подвергли электролизу с инертными электродами. Газ, образовавшийся в результате электролиза на аноде, пропустили через суспензию гидроксида кальция. Напишите уравнения описанных реакций.

3. Осадок, образовавшийся в результате взаимодействия раствора сульфата железа(II) и гидроксида натрия, отфильтровали и прокалили. Твердый остаток полностью растворили в концентрированной азотной кислоте. В полученный раствор добавили медные стружки. Напишите уравнения описанных реакций.

4. Газ, полученный при обжиге пирита, вступил в реакцию с сероводородом. Полученное в результате реакции вещество желтого цвета обработали концентрированной азотной кислотой при нагревании. К образовавшемуся раствору прилили раствор хлорида бария. Напишите уравнения описанных реакций.

5. Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. Полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

6. Газ, выделившийся на аноде при электролизе нитрата ртути(II), был использован для каталитического окисления аммиака. Получившийся в результате реакции бесцветный газ мгновенно вступил в реакцию с кислородом воздуха. Образовавшийся бурый газ пропустили через баритовую воды. Напишите уравнения описанных реакций.

7. Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II) . Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

8. При взаимодействии раствора сульфата алюминия с раствором сульфида калия выделился газ, который пропустили через раствор гексагидроксоалюмината калия. Образовавшийся осадок отфильтровали, промыли, просушили и нагрели. Твердый остаток сплавили с едким натром. Напишите уравнения описанных реакций.

9. Через раствор гидроксида натрия пропустили сернистый газ до образования средней соли. К полученному раствору прилили водный раствор перманганата калия. Образовавшийся осадок отделили и подействовали на него соляной кислотой. Выделившийся газ пропустили через холодный раствор гидроксида калия. Напишите уравнения описанных реакций.

10. Смесь оксида кремния(IV) и металлического магния прокалили. Полученное в результате реакции простое вещество обработали концентрированным раствором гидроксида натрия. Выделившийся газ пропустили над нагретым натрием. Образовавшееся вещество поместили в воду. Напишите уравнения описанных реакций.

Тема 7. Химические свойства и получение органических веществ в заданиях С3. Реакции, вызывающие наибольшие сложности у школьников, выходящие за рамки школьного курса.

Для решения заданий С3 школьникам нужно знать весь курс органической химии на профильном уровне.

В основе химических свойств большинства элементов лежит их способность к растворению в водной среде и кислотах. Изучение характеристики меди связано с малоактивным действием в обычных условиях. Особенностью её химических процессов является образование соединений с аммиаком, ртутью, азотной и Низкая растворимость меди в воде не способна вызвать коррозионные процессы. Ей присущи особые химические свойства, позволяющие использовать соединение в разных отраслях промышленности.

Описание элемента

Медь считается старейшим из металлов, который научились добывать люди ещё до нашей эры. Это вещество получают из природных источников в виде руды. Медью называют элемент химической таблицы с латинским наименованием cuprum, порядковый номер которого равен 29. В периодической системе он расположен в четвёртом периоде и относится к первой группе.

Природное вещество является розово-красным тяжёлым металлом с мягкой и ковкой структурой. Температура его кипения и плавления - более 1000 °С. Считается хорошим проводником.

Химическое строение и свойства

Если изучить электронную формулу медного атома, то можно обнаружить, что у него имеется 4 уровня. На валентной 4s-орбитали находится всего один электрон. Во время химических реакций от атома может отщепляться от 1 до 3 отрицательно заряжённых частиц, тогда получаются соединения меди со степенью окисления +3, +2, +1. Наибольшей устойчивостью обладают её двухвалентные производные.

В химических реакциях она выступает в качестве малоактивного металла. В обычных условиях растворимость меди в воде отсутствует. В сухом воздухе не наблюдается коррозия, зато при нагревании поверхность металла покрывается чёрным налётом из оксида двухвалентного. Химическая устойчивость меди проявляется при действии безводных газов, углерода, ряда органических соединений, фенольных смол и спиртов. Для неё характерны реакции комплексообразования с выделением окрашенных соединений. Медь обладает небольшим сходством с металлами щелочной группы, связанным с формированием производных одновалентного ряда.

Что такое растворимость?

Это процесс образования однородных систем в виде растворов при взаимодействии одного соединения с другими веществами. Их составляющими являются отдельные молекулы, атомы, ионы и другие частицы. Степень растворимости определяется по концентрации вещества, которое растворили при получении насыщенного раствора.

Единицей измерения чаще всего являются проценты, объёмные или весовые доли. Растворимость меди в воде, как и других соединений твёрдого вида, подчиняется лишь изменениям температурных условий. Эту зависимость выражают с помощью кривых. Если показатель очень маленький, то вещество считается нерастворимым.

Растворимость меди в водной среде

Металл проявляет коррозионную стойкость под действием морской воды. Это доказывает его инертность в обычных условиях. Растворимость меди в воде (пресной) практически не наблюдается. Зато во влажной среде и под действием углекислого газа на металлической поверхности происходит образование плёнки зелёного цвета, которая является основным карбонатом:

Cu + Cu + O 2 + H 2 O + CO 2 → Cu(OH) 2 · CuCO 2 .

Если рассматривать её одновалентные соединения в виде соли, то наблюдается их незначительное растворение. Такие вещества подвержены быстрому окислению. В результате получаются соединения меди двухвалентные. Эти соли обладают хорошей растворимостью в водной среде. Происходит их полная диссоциация на ионы.

Растворимость в кислотах

Обычные условия протекания реакций меди со слабыми или разбавленными кислотами не способствуют их взаимодействию. Не наблюдается химический процесс металла со щелочами. Растворимость меди в кислотах возможна, если они являются сильными окислителями. Только в этом случае протекает взаимодействие.

Растворимость меди в азотной кислоте

Такая реакция возможна ввиду того, что происходит процесс сильным реагентом. Кислота азотная в разбавленном и концентрированном виде проявляет окислительные свойства с растворением меди.

В первом варианте во время реакции получается меди нитрат и азота двухвалентный оксид в соотношении 75 % к 25 %. Процесс с разбавленной кислотой азотной можно описать следующим уравнением:

8HNO 3 + 3Cu → 3Cu(NO 3) 2 + NO + NO + 4H 2 O.

Во втором случае получается меди нитрат и азота оксиды двухвалентные и четырёхвалентные, соотношение которых 1 к 1. В этом процессе участвует 1 моль металла и 3 моля кислоты азотной концентрированной. При растворении меди происходит сильный разогрев раствора, в результате чего наблюдается термическое разложение окислителя и выделение дополнительного объёма азотных оксидов:

4HNO 3 + Cu → Cu(NO 3) 2 + NO 2 + NO 2 + 2H 2 O.

Реакцию используют в малотоннажном производстве, связанном с переработкой лома или удалением покрытия с отходов. Однако такой способ растворения меди имеет ряд недостатков, связанных с выделением большого количества азотных оксидов. Для их улавливания или нейтрализации необходимо специальное оборудование. Процессы эти весьма затратные.

Растворение меди считается завершённым, когда происходит полное прекращение выработки летучих азотистых оксидов. Температура реакции колеблется от 60 до 70 °C. Следующим этапом является спуск раствора из На его дне остаются небольшие куски металла, который не прореагировал. К полученной жидкости добавляют воду и проводят фильтрацию.

Растворимость в кислоте серной

В обычном состоянии такая реакция не протекает. Фактором, определяющим растворение меди в серной кислоте, является её сильная концентрация. Разбавленная среда не может окислить металл. Растворение меди в концентрированной протекает с выделением сульфата.

Процесс выражается следующим уравнением:

Cu + H 2 SO 4 + H 2 SO 4 → CuSO 4 + 2H 2 O + SO 2 .

Свойства сульфата меди

Соль двухосновную ещё называют сернокислой, обозначают её так: CuSO 4 . Она представляет собой вещество без характерного запаха, не проявляющее летучесть. В безводной форме соль не имеет цвета, она непрозрачная, обладающая высокой гигроскопичностью. У меди (сульфат) растворимость хорошая. Молекулы воды, присоединяясь к соли, могут образовывать кристаллогидратные соединения. Примером служит который является пентагидратом голубого цвета. Его формула: CuSO 4 ·5H 2 O.

Кристаллогидратам присуща прозрачная структура синеватого оттенка, они проявляют горьковатый, металлический привкус. Молекулы их способны со временем терять связанную воду. В природе встречаются в виде минералов, к которым относят халькантит и бутит.

Подвержен воздействию меди сульфат. Растворимость является реакцией экзотермической. В процессе гидратации соли выделяется значительное количество тепла.

Растворимость меди в железе

В результате этого процесса образуются псевдосплавы из Fe и Cu. Для металлического железа и меди возможна ограниченная взаимная растворимость. Максимальные её значения наблюдаются при температурном показателе 1099,85 °C. Степень растворимости меди в твёрдой форме железа равняется 8,5 %. Это небольшие показатели. Растворение металлического железа в твёрдой форме меди составляет около 4,2 %.

Снижение температуры до комнатных значений делает взаимные процессы незначительными. При расплавлении металлической меди, она способна хорошо смачивать железо в твёрдой форме. При получении псевдосплавов Fe и Cu используют особые заготовки. Их создают путём прессования или печения железного порошка, находящегося в чистой или легированной форме. Такие заготовки пропитывают жидкой медью, образуя псевдосплавы.

Растворение в аммиаке

Процесс часто протекает при пропускании NH 3 в газообразной форме над раскалённым металлом. Результатом является растворение меди в аммиаке, выделение Cu 3 N. Это соединение называют нитридом одновалентным.

Соли её подвергаются воздействию раствора аммиачного. Прибавление такого реактива к медному хлориду приводит к выпадению осадка в виде гидроксида:

CuCl 2 + NH 3 + NH 3 + 2H 2 O → 2NH 4 Cl + Cu(OH) 2 ↓.

Аммиачный избыток способствует формированию соединения комплексного типа, имеющего окраску тёмно-синюю:

Cu(OH) 2 ↓+ 4NH 3 → (OH) 2 .

Этот процесс используют для определения ионов двухвалентной меди.

Растворимость в чугуне

В структуре ковкого перлитного чугуна помимо основных компонентов присутствует дополнительный элемент в виде обычной меди. Именно она повышает графитизацию углеродных атомов, способствует увеличению жидкотекучести, прочности и твёрдости сплавов. Металл положительно влияет на уровень перлита в конечном продукте. Растворимость меди в чугуне используют для проведения легирования исходного состава. Основной целью такого процесса является получение ковкого сплава. У него будут повышенные механические и коррозионные свойства, но уменьшено охрупчивание.

Если содержание меди в чугуне составляет около 1 %, то показатель прочности при проведении растяжения приравнивается к 40 %, а текучести увеличивается до 50 %. Это существенно изменяет характеристики сплава. Повышение количества металла, легирующего до 2 %, приводит к изменению прочности до значения 65 %, а показатель текучести становится равен 70 %. При большем содержании меди в составе чугуна труднее образуется шаровидный графит. Введение в структуру легирующего элемента не изменяет технологию формирования вязкого и мягкого сплава. Время, которое отводится для отжига, совпадает с продолжительностью такой реакции при без примеси меди. Оно составляет около 10 часов.

Использование меди для изготовления чугуна с высокой концентрацией кремния не способно полностью устранить так называемое ожелезнение смеси во время отжига. В результате получают продукт с низкой упругостью.

Растворимость в ртути

При смешивании ртути с металлами других элементов получаются амальгамы. Этот процесс может проходить при комнатной температуре, ведь в таких условиях Pb представляет собой жидкость. Растворимость меди в ртути проходит только во время нагревания. Металл необходимо предварительно измельчить. При смачивании жидкой ртутью твёрдой меди происходит взаимное проникновение одного вещества в другое или процесс диффундирования. Значение растворимости выражается в процентах и составляет 7,4*10 -3 . В процессе реакции получается твёрдая простая амальгама, похожая на цемент. Если её немного нагреть, то она размягчается. В результате такую смесь используют для починки изделий из фарфора. Существуют ещё и сложные амальгамы с оптимальным содержанием в ней металлов. Например, в стоматологическом сплаве присутствуют элементы меди и цинка. Их количество в процентах относится как 65: 27: 6:2. Амальгам с таким составом называется серебряным. Каждый компонент сплава выполняет определённую функцию, которая позволяет получить пломбу высокого качества.

Другим примером служит сплав амальгамный, в котором наблюдается высокое содержание меди. Его ещё называют медным сплавом. В составе амальгама присутствует от 10 до 30 % Cu. Высокое содержание меди препятствует взаимодействию олова со ртутью, что не позволяет образовываться очень слабой и коррозирующей фазе сплава. Кроме того, уменьшение количества в пломбе серебра приводит к удешевлению. Для приготовления амальгамы желательно использовать инертную атмосферу или защитную жидкость, которая образует плёнку. Металлы, входящие в состав сплава способны быстро окисляться воздухом. Процесс нагревания амальгамы купрума в присутствие водорода приводит к отгонке ртути, что позволяет отделить элементарную медь. Как видите, эта тема несложна для изучения. Теперь вы знаете, как медь взаимодействует не только с водой, но и с кислотами и другими элементами.