Условие ионизации электронным ударом формула. Ионизация электронным ударом

«Введение в органическую химию» - Развивалась органическая химия? C6H12O6. Al2S3. C2H5OH. C10H22. NH3. Тезис: Такое органическая химия? HNO3. Органических веществ значительно больше, чем неорганических? Как отличить натуральную кожу от искусственной? Аргументы: Химия – одна из быстроразвивающихся наук. CH3COOH. CaCO3. Метилфениловый эфир L-аспартиламиномалоновой кислоты в 33000 раз слаще сахара.

«Теория органической химии» - Органическая химия. Основные классы органических соединений. Альдегиды. Спирты. Гипотезы химии. Времена Средневековья. Продукты. Разработка теории валентности. Ученики. Функции. Немного из истории. Простые эфиры. Ионы. Человек. Галогены. Определение органической химии. Строение органических молекул.

«Состав организма» - Структура молекулы углеводов. Кислород. Жиры составляют существенную часть нашей пищи. В процессе пищеварения жир расщепляется на составные части - глицерин и жирные кислоты. Азот; Мы получаем углеводы из зерновых, бобовых культур, картофеля, фруктов и овощей. Питательными веществами называются белки, жиры и углеводы.

«Предмет органической химии» - Классификация ОВ. Синтетические – создает человек в лабораторных условиях, схожих веществ в природе нет. Землистые (минеральные). 2) В состав обязательно входят (С) и (Н) – углеводороды (УВ). Пластмасса. Неорганические. Орган. Молекулярная КР. Бензин. Органические. 1) Многочисленность (около 27 млн.).

«Теория строения Бутлерова» - Количественный состав молекулы. Фридрих Вёлер. Учение о взаимном влиянии атомов. Свойства органических соединений. Атом водорода. Сравнительная характеристика этана и этилена. Александр Михайлович Бутлеров. Структурные уровни и системная организация материи. Стереохимия. Возможность установления “порядка связей” в молекулах.

«Теория строения химических соединений» - Предпосылки возникновения теории. Велер Фридрих. Берцелиус (Berzelius) Йенс Якоб. Свойства органических соединений. Органическая химия. Этиловый спирт. Создание теории строения веществ. Пространственная изомерия. Кекуле (Kekule) Фридрих Август. Структурная изомерия. Франкленд (Frankland) Эдуард. Основные положения теории строения химических соединений.

Ионизация под действием электронного удара (ЭУ) наиболее часто применяется в современных масс-спектрометрах. В данном разделе будут рассмотрены устройство ионного источника и основные параметры, определяющие характер масс-спектра.

Принципиальная схема ионного источника ЭУ приведена на рис. 2.1. Бомбардирующие электроны образуются в результате термической эмиссии из нагретого до высокой температуры катода (филамент), изготовленного из рениевой или вольфрамовой проволоки. Электроны ускоряются разностью потенциалов (V ) между катодом (1 ) и анодом (2 ) и попадают в область ионизации. Постоянный магнит (4 ) коллимирует электронный пучок и ограничивает его в узкой спиральной траектории, что увеличивает вероятность взаимодействия электронов с молекулами исследуемого вещества (М 0), которое поступает из системы напуска в парообразном состоянии. Парциальное давление вещества в газообразном состоянии 10 -5 -10 -6 торр.

Ионы, образующиеся в ионном источнике, с помощью ионно-оптической системы формируются в узкий пучок и специальным потенциалом (на рис. 2.1 не показан) выталкиваются из области ионизации, ускоряются с помощью высокого напряжения, которое обычно более 2000 В, и попадают в зону действия масс-анализатора.

Под действием ионизирующих электронов молекулы исследуемого вещества могут претерпевать следующие превращения:

Вероятность протекания того или иного процесса определяется прежде всего энергией ионизирующих электронов, которая выражается в электрон-вольтах (эВ) и равна произведению заряда электрона (з ) на разность потенциалов (V) между катодом и анодом.

Если энергия ионизирующих электронов равна энергии ионизации молекулы, которая для большинства органических соединений лежит в пределах 7-12 эВ, происходит ионизация. Вероятность протекания этого процесса возрастает с увеличением энергии электронов. Одновременно с ионизацией начинает происходить и фрагментация молекулярных ионов. Зависимость выхода молекулярных ионов (величина ионного тока) от энергии ионизирующих электронов, выдаваемая кривой эффективности ионизации , приведена на рис. 2.2. Здесь же приведена аналогичная кривая и для фрагментного иона. Естественно, что эта кривая начинается при более высоких значениях энергии ионизирующих электронов, поскольку энергия появления фрагментарных ионов всегда выше энергии


ионизации. Кривые эффективности ионизации имеют участки крутого подъема ионного тока (обычно до энергии 30-40 эВ), за которым следует область насыщения, где величина ионного тока практически не изменяется с возрастанием энергии ионизирующих электронов.


В большинстве случаев масс-спектры получают при энергии 70 эВ, т.е. в области насыщения. Это позволяет обеспечить наибольшую чувствительность прибора и получение воспроизводимых результатов. Работа при энергии до 30-40 эВ, т.е. на участках крутого подъема, не дает воспроизводимых результатов, поскольку небольшое изменение энергии ионизирующих электронов ведет к заметным колебаниям интенсивности ионного тока. Однако в ряде случаев для аналитических целей используют масс-спектры, полученные при низких энергиях электронов (низковольтные масс-спектры), например, для идентификации молекулярного иона при низкой интенсивности его пика в высоковольтном масс-спектре. В низковольтных масс-спектрах вследствие резкого уменьшения фрагментации увеличивается доля молекулярных ионов в полном ионном токе. Для иллюстрации сказанного выше на рис. 2.3 приведены масс-спектры бензойной кислоты, полученные при различной энергии ионизирующих электронов. Этот пример свидетельствует о том, что снижение энергии электронов дает возможность идентифицировать молекулярный ион, особенно в том случае, когда интенсивность его пика в масс-спектре невелика.

В условиях ЭУ в результате захвата молекулой электрона возможно образование отрицательных ионов. Взаимодействие электрона с молекулой может сопровождаться ее гетеролитическим расщеплением с образованием ионной пары. При низких энергиях электронов, близких к тепловым, обычно происходит резонансный захват электрона. Этот процесс может быть недиссоциативным:

АBC + з > АBC ¬ ?

и диссоциативным:

АBC ¬ ? > [АB] ? + C .

Важными характеристиками ионного источника для ЭУ являются ток катода (ток, который течет по ленточке катода), ток эмиссии (электронный ток между катодом и анодом) и температура ионного источника. Меняя ток эмиссии, можно варьировать чувствительность прибора. Высокая температура (~200-250°С) необходима для перевода молекул образца в газообразное состояние, удаления основной массы исследуемого вещества из ионного источника, что предотвращает его осаждение на элементы источника. Загрязнение источника ионов органическим веществом особенно опасно для изолирующих материалов (фарфор, стекло, кварц), которые в результате загрязнения приобретают значительную проводимость и сильно изменяют подаваемые электростатические потенциалы. Это может приводить к опасному пробою между электродами.

Таким образом, с помощью ЭУ можно анализировать только достаточно летучие соединения, которые могут быть переведены в газообразное состояние, или создавать необходимое парциальное давление пара в ионном источнике (~10 -15 -10 -16 торр.) Термически неустойчивые соединения методом ЭУ исследовать нельзя. Предварительно такие соединения должны быть превращены в их стабильные производные.

Газовая фаза:

    Электронная ионизация

    Химическая ионизация

    Электронный захват

    Ионизация в электрическом поле

Жидкая фаза:

    Фотоионизация при атмосферном давлении

    Электроспрей

    Ионизация при атмосферном давлении

    Химическая ионизация при атмосферном давлении

Твердая фаза:

    Прямая лазерная десорбция

    Матрично-активированная лазерная десорбция

    Масс-спектрометрия вторичных ионов

    Бомбардировка быстрыми атомами

    Десорбция в электрическом поле

    Плазменная десорбция

    Ионизация в индуктивно-связанной плазме

    Термоионизация

    Ионизация в тлеющем разряде

1.1 Электронная ионизация

Является одним из наиболее известных способов ионизации. Для ионизации вещества используется поток электронов с высокой энергией. На

рисунке 3 приведена схема типичной установки, применяемой для этих целей.

Рисунок 3. Устройство прибора для электронной ионизации

Источником электронов является нагретая металлическая проволока (катод). Электроны, покидающие поверхность катода, разгоняются электрическим полем по направлению к аноду. Путь электронов проходит через объем, занятый анализируемым веществом, предварительно переведенным в газообразное состояние (в ионизационной камере поддерживается разряжение 10 –5 – 10 –6 мм рт. ст.), с молекулами которого происходит взаимодействие, заключающееся в передаче энергии. Электрон, пролетая вблизи молекулы, вызывает возбуждение ее электронной оболочки. Результатом такого возбуждения является перемещение собственных электронов молекулы на более высоколежащие орбитали. Начиная с определенных значений энергии (энергия ионизации), возбуждение заканчивается потерей электрона и превращением молекулы в соответствующий катион-радикал, называемый молекулярным ионом.

M +e M + + 2e

Эффективность ионизации зависит от энергии ионизирующих электронов, максимум эффективности достигается при энергии примерно 70 эВ.

Рисунок 4. Распределение энергии электронов

Преимущества:

– Наиболее изученный метод ионизации;

– Может использоваться для ионизации практически любых летучих соединений;

– Высокая воспроизводимость спектров;

– Фрагментация позволяет получить информацию о строении соединения;

– Возможность идентификации соединений сравнением полученного масс-спектра со спектрами из базы данных.

Недостатки:

– Анализируемое вещество должно обладать достаточной летучестью и термической стабильностью;

– Отсутствие или низкая интенсивность в спектрах многих соединений сигнала молекулярного иона затрудняет идентификацию.

1.2 Химическая ионизация

Химическая ионизация – это ионизация образца пучком предварительно ионизированных молекул газа, например, метана или аммиака. Ионизация молекул газа происходит при помощи электронной ионизации при 150-200 эВ и дальнейшего химического превращения газа-ионизатора.

Сталкиваясь с молекулами образца, ионизированные молекулы газа передают свой заряд в виде протона:

Преимущества:

– Позволяет получить информацию о молекулярной массе соединения;

– Масс-спектр намного проще, чем при ионизации электронами.

Недостатки:

– Как и в случае электронной ионизации, анализируемое вещество должно обладать достаточной летучестью и термической стабильностью;

– Поскольку осколочных ионов практически не образуется, метод в большинстве случаев не позволяет получить информацию о строении вещества;

– Результат сильно зависит от типа газа-реагента, его давления, времени взаимодействия с веществом, поэтому очень трудно добиться воспроизводимых результатов.

Электронная ионизация (EI)

Рис. 5.

Электронная ионизация - один из наиболее важных способов ионизации для повседневных анализов малых гидрофобных термически стабильных молекул и до сих пор широко используется. Так как EI обычно даёт большое число фрагментарных ионов, это «жёсткий» способ ионизации.

Однако, фрагментарная информация также может быть очень полезной. Например, используя базы данных, содержащие свыше 200000 масс-спектров электронной ионизации, возможно определить неизвестное соединение в течение нескольких секунд (конечно, если оно есть в базе данных). Эти базы данных, а также объём памяти и поисковые алгоритмы современных компьютеров позволяет быстро просматривать такие базы (как, например, база NIST), таким образом значительно облегчая идентификацию малых молекул.

Устройство электронной ионизации прямолинейно (рис. 5). Образец должен поставляться в газообразной форме, что осуществляется «выкипанием» образца посредством термической десорбции или введением газа через капилляр. Капилляр часто является выходом капиллярной колонки прибора газовой хроматографии. В этом случае капиллярная колонка обеспечивает разделение (это также известно как газовая хромат-масс-спектрометрия - GC/MS). Десорбция твердых или жидких образцов производится нагреванием в вакууме масс-спектрометра. После перехода в газовую фазу соединения переносятся в устройство электронной ионизации, где электроны возбуждают молекулу, тем самым вызывая ионизацию отрывом электрона и фрагментацию.

Применимость электронной ионизации значительно уменьшается для соединений с молекулярной массой свыше 400 дальтон, потому что необходимая термическая десорбция образца ведёт к температурному разложению до того, как происходит испарение. Принципиальными проблемами, связанными с термической десорбцией при электронной ионизации являются 1) нелетучесть больших молекул, 2) термическое разложение, 3) избыточная фрагментация.

Механизм отрыва электрона при образовании положительного иона осуществляется следующим образом:

  • · Образец термически испаряется.
  • · Электроны испускаются нагретым катодом и ускоряются электрическим полем с разностью потенциалов в 70 В, чтобы образовать непрерывный пучок электронов.
  • · Молекулы образца проходят через пучок электронов.
  • · Электроны с кинетической энергией 70 эВ передают часть своей энергии молекулам. Эта передача вызывают ионизацию (отрыв электрона) так, что ион сохраняет обычно не более 6 эВ избыточной энергии.
  • · Избыток внутренней энергии (6 эВ) в молекуле ведёт к некоторой фрагментации.

Электронный захват обычно намного менее эффективен, чем отрыв электрона, хотя иногда используется таким же способом, с высокой чувствительностью работая для соединений с большим сродством к электрону: M + e - > M - .

Достоинства метода:

  • · Метод ионизации электронным ударом дает богатые фрагментами масс-спектры, которые однозначно характеризуют структуру молекулы, что удобно для идентификации веществ;
  • · Масс-спектрометрия электронного удара - высокочувствительный метод анализа, позволяет анализировать пикомольные количества вещества;
  • · Существуют "библиотеки" масс-спектров, содержащие спектры более 200000 органических соединений, по которым можно проводить их идентификацию с применением ЭВМ.

Недостатки метода:

  • · Молекулярные ионы образуются лишь у 20% органических соединений;
  • · метод применим только для определения легколетучих термически стабильных соединений;
  • · ионы с большими значениями m/z, дающие информацию о молекулярной массе и наличии функциональных групп обеспечивают небольшой вклад в значения полного ионного тока;
  • · отрицательно заряженные ионы, имеющие большое значение в структурном анализе, образуются в очень небольшом количестве и ограниченным числом органических соединений.

Электрический ток в газах.

Несамостоятельный электрический разряд. Опыт показывает, что две разноименно заряженные пластины, разделенные слоем воздуха, не разряжаются.

Обычно вещество в газообразном состоянии является изолятором, так как атомы или молекулы, из которых оно состоит, содержат одинаковое число отрицательныхи положительных электрических зарядов и в целом нейтральны.

Внесем в пространство между пластинами пламя спички или спиртовки (рис. 164).

При этом электрометр начнет быстро разряжаться. Следовательно, воздух под действием пламени стал проводником. При вынесении пламени из пространства между пластинами разряд электрометра прекращается. Такой же результат можно получить, облучая пластины светом электрической дуги. Эти опыты доказывают, что газ может стать проводником электрического тока.

Явление прохождения электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия, называется несамостоятельным электрическим разрядом.

Термическая ионизация. Нагревание газа делает его проводником электрического тока, потому что часть атомов или молекул газа превращается в заряженные ионы.

Для отрыва электрона от атома необходимо совершить работу против сил кулоновского притяжения между положительно заряженным ядром и отрицательным электроном. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома или молекулы, называется энергией связи.

Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.

Процесс возникновения свободных электронов и положительных ионов в результате столкновений атомов и молекул газа при высокой температуре называется термической ионизацией.

Плазма. Газ, в котором значительная часть атомов или молекул ионизована, называется плазмой. Степень термической ионизации плазмы зависит от температуры. Например, при температуре 10 000 К ионизовано меньше 10 % общего числа атомов водорода, при температуре выше 20 000 К водород практически полностью ионизован.

Электроны и ионы плазмы могут перемещаться под действием электрического поля. Таким образом, при низких температурах газ является изолятором, при высоких температурах превращается в плазму и становится проводником электрического тока.



Фотоионизация. Энергия, необходимая для отрыва электрона от атома или молекулы, может быть передана светом. Ионизация атомов или молекул под действием света называется фотоионизацией.

Самостоятельный электрический разряд . При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.

В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

Основной механизм ионизации газа при самостоятельном электрическом разряде - ионизация атомов и молекул вследствие ударов электрона.

Ионизация электронным ударом. Ионизация электронным ударом становится возможной тогда, когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую энергию связи W электрона с атомом.

Кинетическая энергия Wк электрона, приобретаемая под действием электрического поля напряженностью, равна работе сил электрического поля:

где l - длина свободного пробега.

Отсюда приближенное условие начала ионизации электронным ударом имеет вид

Энергия связи электронов в атомах и молекулах обычно выражается в электронволътах (эВ). 1 эВ равен работе, которую совершает электрическое поле при перемещении электрона (или другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между которыми равно 1 В:

Энергия ионизации атома водорода, например, равна 13,6 эВ.

Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон при свободном пробеге настолько увеличивает кинетическую энергию, что при соударении с молекулой ионизует ее.

Первый электрон, вызвавший ионизацию молекулы, и второй электрон, освобожденный в результате ионизации, под действием электрического поля приобретают ускорение в направлении от катода к аноду. Каждый из них при следующих соударениях освобождает еще по одному электрону и общее число свободных электронов становится равным четырем. Затем таким же образом оно увеличивается до 8, 16, 32, 64 и т. д. Число свободных электронов, движущихся от катода к аноду, нарастает лавинообразно до тех пор, пока они не достигнут анода (рис. 165).

Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.

Концентрация ионов в плазме по мере развития самостоятельного разряда увеличивается, а электрическое сопротивление разрядного промежутка уменьшается. Сила тока в цепи самостоятельного разряда обычно определяется лишь внутренним сопротивлением источника тока и электрическим сопротивлением других элементов цепи.

Искровой разряд. Молния. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то происходящий самостоятельный разряд называется искровым разрядом. Искровой разряд прекращается через короткий промежуток времени после начала разряда в результате значительного уменьшения напряжения. Примеры искрового разряда - искры, возникающие при расчесывании волос, разделении листов бумаги, разряде конденсатора.

Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 000-20 000 А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. 166).

При увеличении силы тока в канале молнии происходит нагревание плазмы до температуры свыше 10 000 К. Изменения давления в плазменном канале молнии при увеличении силы тока и прекращении разряда вызывают звуковые явления, называемые громом.

Тлеющий разряд . При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).

Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом (рис. 168).

Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках.

Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.

Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.

Рекомбнация.

Рекомбинация - процесс, обратный ионизации. Состоит в захвате ионом свободного электрона. Рекомбинация приводит к уменьшению заряда иона или к превращению иона в нейтральный атом или молекулу. Возможна также рекомбинация электрона и нейтрального атома (молекулы), приводящая к образованию отрицательного иона, и в более редких случаях - рекомбинация отрицательного иона с образованием двух- или трехкратно заряженного отрицательного иона. Вместо электрона в некоторых случаях могут выступать другие элементарные частицы, например мезоны, создавая мезоатомы или мезомолекулы. На ранних этапах развития вселенной происходила реакция рекомбинации водорода.

Рекомбинация - это процесс, обратный разрыву химической связи. Рекомбинация связана с образованием ординарной ковалентной связи за счёт обобществления неспаренных электронов, принадлежащих разным частицам (атомам, свободным радикалам)

Примеры рекомбинации:

H + H → H2 + Q ;

Cl + Cl → Cl2 + Q ;

CH3 + CH3 → C2H6 + Q и др.