Чем отличаются проводники. Что лучше выбрать: провод пвс или шнур шввп? й способ как определить заземление и зануление

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция : медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

Полупроводниками являются кремний и германий.

Зачастую люди, не имеющие никакого отношения к электронике и электротехнике, сталкиваются с необходимостью проведения различных ремонтных работ в этих областях.

В подобной ситуации информация о том, чем отличается кабель от провода, будет весьма уместной.

Казалось бы, эти понятия практически идентичны, однако неправильный выбор проводника может привести к весьма неприятным последствиям!

Провод — это изделие электротехнической промышленности, покрытое изоляционной оболочкой , состоящей из определенного количества жил. Данная конструкция повреждается при определенном механическом воздействии, поэтому в помещениях, где велик риск ее повреждения, провода для повышения прочности заключаются в стальную или медную оплетку.

Ее функция не ограничивается защитой устройства от механических повреждений: помимо этого она способствует его защите от отрицательного воздействия электромеханических наводок. Кроме этого важной составной частью этого проводника считается его изоляционное покрытие , выполненное, как правило, из резины или винила.

Сегодня магазины предлагают к покупке 2 типа электропроводов: однопроволочные и многожильные . Первые (их еще называют «со сплошной проволокой») не требуют внешнего покрытия, используются для повышения производительности высокочастотных электронных приборов.

Многожильные же, в отличие от них, более гибкие, прочные и устойчивые к внешним повреждениям, поэтому обладают более длительным сроком эксплуатации.

Собираясь монтировать в загородном доме или , провести дополнительное или добавить пару розеток, не прибегая при этом к услугам профессионалов, приходится сталкиваться с множеством вопросов.

В специальных обзорах, мы ответим на вопросы: , как и , найти , как поставить и как подключить .

Описание кабелей

по своей сути представляет собой группу изолированных друг от друга жил, объединенных в единую конструкцию . Цель данного объединения — защита проводников от механического повреждения, негативного воздействия внешней среды, а также упрощение процесса монтажа, эксплуатации.

Вся конструкция окружена дополнительным слоем изоляционного покрытия (броневым кожухом, если это необходимо). Повышенные требования безопасности, необходимость совместной прокладки и сложные условия эксплуатации — вот условия, при которых объединение проводников в единую конструкцию просто необходимо!

Сравнение

Главная характеристика всех электрического тока — их максимальное номинальное напряжение. Для проводов оно равняется 100 В, тогда как для кабелей этот показатель практически не имеет ограничений .

Провода в отличии от кабелей могут не иметь изоляционной оболочки, тогда как для последних она обязательна.

Более того, при необходимости она может быть усилена специальной броней . Именно этот фактор является ключевым для использования кабеля под землей или на глубине, помимо их повышенной прочности, а также долговечности.

Предлагаем вашему вниманию видео о сравнительных технических характеристиках проводов и кабелей:

Применение

Провода в большинстве случаев меньше сопротивляются нагреву, то есть обладают слабой термической защитой, обусловленной лишь свойствами самого изоляционного покрытия. При этом они гораздо легче других проводников, что должно учитываться при монтаже .

Установка большого количества линий передач тока максимальной мощности на небольшой площади нежелательна, поскольку при возгорании помещение может сгореть полностью!

Воздушные линии электропередач — еще одна сфера применения проводов. Их малый удельный вес позволяет протягивать изделия через опоры , стоящие на значительном расстоянии друг от друга.

Конечно, по воздуху можно проложить кабель, но для этого потребуется утяжеление опорных столбов во избежание их раскачивания и дальнейшего повреждения проводника.

Силовые проводники идеально подходят для передачи больших объемов мощности в условиях проводящей среды . Внешняя изоляционная оболочка из резины, бумаги, термоустойчивых полимеров, свинца, витой стальной ленты — все это делает риск возгорания практически невозможным.

Итак, разница между кабелем и проводом следующая. Первый состоит из нескольких проводов, объединенных одним или несколькими слоями защиты. Максимальное номинальное напряжение провода равняется 1000 В , кабель же может эксплуатироваться при любых показателях напряжения. Определенные конструкционные нюансы делают кабель более предпочтительным вариантом для прокладки в воде или в толще земли.

В заключение предлагаем посмотреть интересное и познавательное видео, чем отличается кабель от провода:

Многие химические элементы являются полупроводниками и проводниками. В чем особенности тех и других? Чем отличаются полупроводники от проводников?

Что представляют собой полупроводники?

Под полупроводниками понимаются химические элементы, обладающие ограниченной способностью передавать электрический ток. Это обусловлено небольшим количеством свободных электронов, формирующихся в их структуре при подключении электродов.

Типичными полупроводниками считаются такие химические элементы, как кремний - относящийся, в частности, к 4-й группе веществ по периодической системе Д. И. Менделеева. На внешней оболочке кремния располагается 4 электрона, классифицируемых как валентные. К иным чистым полупроводникам можно отнести, к примеру, германий.

Одна из главных характеристик полупроводников - удельное сопротивление. Оно может находиться в интервале от 10 в 4 до 10 в минус 5 степени Ом на метр. Для того чтобы понизить удельное сопротивление рассматриваемых элементов, в их состав могут быть включены легирующие примеси. Такие как, например, бор и мышьяк.

Если легирование полупроводников осуществляется посредством элементов 3-й группы по таблице Менделеева (в частности, при использовании бора), то полупроводник будет классифицирован как относящийся к p-типу. У элементов 3-й группы в оболочке присутствует 3 электрона. Это значит, что в структуре кристалла легированного полупроводника из-за недостающего электрона образуются «дырки», которые при подключении тока начинают движение в обратном направлении относительно положительного контакта (к которому, в свою очередь, стремятся электроны).

Если легирование полупроводников осуществляется посредством элементов 5-й группы (например, при использовании мышьяка), то проводник будет относиться к n-типу. У элементов 5-й группы на внешней оболочке располагается 5 электронов. Поэтому при легировании полупроводника часть из них освобождается, вследствие чего элемент приобретает проводимость.

Можно отметить, что пограничная область, располагающаяся между полупроводниками p-типа и n-типа, обладает свойством проводить ток только при подключении электродов в определенном положении. Благодаря данной особенности функционируют различные электронные компоненты, в составе которых используются полупроводниковые вещества, - диоды, транзисторы.

Еще одно примечательное свойство рассматриваемых элементов - усиление проводимости по мере увеличения температуры.

Что представляют собой проводники?

Под проводниками понимаются химические элементы, в которых есть электроны, способные отделяться от одного ядра и перемещаться к другому при подключении тока. Как правило, это металлы. Хорошими проводниками считаются медь, алюминий.

Чем чище металл - тем большей проводимостью он обладает. Примеси снижают данное свойство. При нагревании металлов их проводимость снижается - в то время как у полупроводников, как мы отметили выше, увеличивается.

Сравнение

Главное отличие полупроводников от проводников заключается в небольшом количестве образующихся при подключении тока свободных электронов в структуре первых (которые, в свою очередь, появляются в большем количестве наряду с «дырками» при легировании или же в процессе нагрева) и высоком уровне электрического сопротивления соответствующих элементов. А вот проводники имеют множество свободных электронов и характеризуются невысоким сопротивлением. При нагревании первых элементов их сопротивление снижается, при тепловом воздействии на проводники - увеличивается.

Определив, в чем разница между полупроводниками и проводниками, зафиксируем выводы в таблице.

В электротехнике применяются различные материалы. Электрические свойства веществ определяются количеством электронов на внешней валентной орбите. Чем меньше электронов находится на этой орбите, тем слабее они связаны с ядром, тем легче могут отправиться путешествовать.

Под воздействием температурных колебаний электроны отрываются от атома и перемещаются в межатомном пространстве. Такие электроны называют свободными, именно они и создают в проводниках электрический ток. А велико ли межатомное пространство, есть ли простор для путешествия свободных электронов внутри вещества?

Структура твердых тел и жидкостей кажется непрерывной и плотной, напоминающей по структуре клубок ниток. Но на самом деле даже твердые тела больше похожи на рыболовную или волейбольную сеть. На бытовом уровне этого конечно не разглядеть, но точными научными исследованиями установлено, что расстояния между электронами и ядром атомов намного превышают их собственные размеры.

Если размер ядра атома представить в виде шара размером с футбольный мяч, то электроны в такой модели будут размером с горошину, а каждая такая горошина расположена от «ядра» на расстоянии в несколько сотен и даже тысяч метров. А между ядром и электроном пустота - просто ничего нет! Если в таком же масштабе представить расстояния между атомами вещества, размеры получатся вообще фантастические, - десятки и сотни километров!

Хорошими проводниками электричества являются металлы . Например, атомы золота и серебра имеют на внешней орбите всего по одному электрону, поэтому именно они являются наилучшими проводниками. Железо тоже электричество проводит, но несколько хуже.

Еще хуже проводят электричество сплавы с высоким сопротивлением . Это нихром, манганин, константан, фехраль и другие. Такое многообразие высокоомных сплавов связано с тем, что они предназначены для решения различных задач: нагревательные элементы, тензодатчики, образцовые резисторы для измерительных приборов и многое другое.

Для того, чтобы оценить способность материала проводить электричество было введено понятие «удельная электропроводность» . Обратное значение - удельное сопротивление . В механике этим понятиям соответствует удельный вес.

Изоляторы , в отличие от проводников, не склонны терять электроны. В них связь электрона с ядром очень прочная, и свободных электронов почти нет. Точнее есть, но очень мало. При этом в некоторых изоляторах их больше, а качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и бумагу. Поэтому изоляторы условно можно разделить на хорошие и плохие.

Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры изоляционные свойства ухудшаются, некоторым электронам все-таки удается оторваться от ядра.

Аналогично удельное сопротивление идеального проводника было бы равно нулю. Но такого проводника к счастью нет: представьте себе, как бы выглядел закон Ома ((I = U/R) с нулем в знаменателе!!! Прощай математика и электротехника.

И лишь при температуре абсолютного нуля (-273,2C°) тепловые колебания полностью прекращаются, а самый плохой изолятор становится достаточно хорошим. Для того, чтобы определить численно «это» плохой - хороший пользуются понятием удельного сопротивления. Это сопротивление в Омах кубика с длиной ребра в 1 см, размерность удельного сопротивления при этом получается в Ом/см. Удельное сопротивление некоторых веществ показано ниже. Проводимость это величина обратная удельному сопротивлению, - единица измерения Сименс, - 1См = 1 / Ом.

Хорошую проводимость или малое удельное сопротивление имеют: серебро 1,5*10^(-6), читать, как (полтора на десять в степени минус шесть), медь 1,78*10^(-6), алюминий 2,8*10^(-6). Намного хуже проводимость у сплавов с высоким сопротивлением: константан 0,5*10^(-4), нихром 1,1*10^(-4). Эти сплавы можно назвать плохими проводниками. После всех этих сложных цифр следует подставить Ом/см.

Далее в отдельную группу можно выделить полупроводники: германий 60 Ом/см, кремний 5000 Ом/см, селен 100 000 Ом/см. Удельное сопротивление этой группы больше, чем у плохих проводников, но меньше, чем у плохих изоляторов, не говоря уже о хороших. Наверное, с тем же успехом полупроводники можно было назвать полуизоляторами.

После такого короткого знакомства со строением и свойствами атома следует рассмотреть, как атомы взаимодействуют между собой, как атомы взаимодействуют между собой, как из них получаются молекулы, из которых состоят различные вещества. Для этого снова придется вспомнить об электронах на внешней орбите атома. Ведь именно они участвуют в связи атомов в молекулы и определяют физические и химические свойства вещества.

Как из атомов получаются молекулы

Любой атом находится в стабильном состоянии, если на его внешней орбите находится 8 электронов. Он не стремится забрать электроны у соседних атомов, но не отдает и свои. Чтобы убедиться в справедливости этого достаточно в таблице Менделеева посмотреть на инертные газы: неон, аргон, криптон, ксенон. Каждый из них на внешней орбите имеет 8 электронов, чем и объясняется нежелание этих газов вступать в какие - либо отношения (химические реакции) с другими атомами, строить молекулы химических веществ.

Совсем по-другому обстоит дело у тех атомов, у которых на внешней орбите нет заветных 8 электронов. Такие атомы предпочитают объединиться с другими, чтобы за счет них дополнить свою внешнюю орбиту до 8 электронов и обрести спокойное стабильное состояние.

Вот, например, всем известная молекула воды H2O. Она состоит из двух атомов водорода и одного атома кислорода, как показано на рисунке 1 .

Рисунок 1

В верхней части рисунка показаны отдельно два атома водорода и один атом кислорода. На внешней орбите кислорода находятся 6 электронов и тут же поблизости два электрона у двух атомов водорода. Кислороду до заветного числа 8 не хватает как раз двух электронов на внешней орбите, которые он и получит, присоединив к себе два атома водорода.

Каждому атому водорода для полного счастья не хватает 7 электронов на внешней орбите. Первый атом водорода получает на свою внешнюю орбиту 6 электронов от кислорода и еще один электрон от своего близнеца - второго атома водорода. На его внешней орбите вместе со своим электроном теперь 8 электронов. Второй атом водорода тоже комплектует свою внешнюю орбиту до заветного числа 8. Этот процесс показан в нижней части рисунка 1 .

На рисунке 2 показан процесс соединения атомов натрия и хлора. В результате чего получается хлористый натрий, который продается в магазинах под названием поваренная соль.

Рисунок 2 . Процесс соединения атомов натрия и хлора

Здесь тоже каждый из участников получает от другого недостающее количество электронов: хлор к своим собственным семи электронам присоединяет единственный электрон натрия, в то время, как свои отдает в распоряжение атома натрия. У обоих атомов на внешней орбите по 8 электронов, чем достигнуто полное согласие и благополучие.

Валентность атомов

Атомы, у которых на внешней орбите содержится 6 или 7 электронов, стремятся присоединить к себе 1 или 2 электрона. Про такие атомы говорят, что они одно или двухвалентны. А вот если на внешней орбите атома 1, 2 или 3 электрона, то такой атом стремится их отдать. В этом случае атом считается одно, двух или трехвалентным.

Если на внешней орбите атома содержится 4 электрона, то такой атом предпочитает объединиться с таким же, у которого тоже 4 электрона. Именно так объединяются атомы германия и кремния, использующиеся в производстве транзисторов. В этом случае атомы называются четырехвалентными. (Атомы германия или кремния могут объединяться и с другими элементами, например, кислородом или водородом, но эти соединения в плане нашего рассказа неинтересны.)

На рисунке 3 показан атом германия или кремния, желающий объединиться с таким же атомом. Маленькие черные кружочки - это собственные электроны атома, а светлые кружки обозначают места, куда попадут электроны четырех атомов - соседей.

Рисунок 3 . Атом германия (кремния).

Кристаллическая структура полупроводников

Атомы германия и кремния в периодической таблице находятся в одной группе с углеродом (химическая формула алмаза C,- это просто большие кристаллы углерода, полученные при определенных условиях), и поэтому при объединении образуют алмазоподобную кристаллическую структуру. Образование подобной структуры показано, в упрощенном, конечно, виде на рисунке 4 .

Рисунок 4 .

В центре куба находится атом германия, а по углам расположены еще 4 атома. Атом, изображенный в центре куба, своими валентными электронами связан с ближайшими соседями. В свою очередь угловые атомы отдают свои валентные электроны атому, расположенному в центре куба и соседям, - атомам на рисунке не показанным. Таким образом, внешние орбиты дополняются до восьми электронов. Конечно, никакого куба в кристаллической решетке нет, просто он показан на рисунке, чтобы было понятно взаимное, объемное расположение атомов.

Но для того, чтобы максимально упростить рассказ о полупроводниках, кристаллическую решетку можно изобразить в виде плоского схематического рисунка, несмотря на то, что межатомные связи все-таки расположены в пространстве. Такая схема показана на рисунке 5 .

Рисунок 5 . Кристаллическая решетка германия в плоском виде.

В таком кристалле все электроны крепко привязаны к атомам своими валентными связями, поэтому свободных электронов здесь, видимо, просто нет. Выходит, что перед нами на рисунке изолятор, поскольку нет в нем свободных электронов. Но, на самом деле это не так.

Собственная проводимость

Дело в том, что под воздействием температуры некоторым электронам все же удается оторваться от своих атомов, и на некоторое время освободиться от связи с ядром. Поэтому небольшое количество свободных электронов в кристалле германия существует, за счет чего есть возможность проводить электрический ток. Сколько же свободных электронов существует в кристалле германия при нормальных условиях?

Таких свободных электронов всего не более двух на 10^10 (десять миллиардов) атомов, поэтому германий плохой проводник, или как принято говорить полупроводник. При этом следует заметить, что лишь в одном грамме германия содержится 10^22 (десять тысяч миллиардов миллиардов) атомов, что позволяет «получить» около двух тысяч миллиардов свободных электронов. Кажется, что достаточно для того, чтобы пропустить большой электрический ток. Чтобы разобраться с этим вопросом, достаточно вспомнить, что такое ток силой в 1 A.

Току в 1 A соответствует прохождение через проводник за одну секунду электрического заряда в 1 Кулон, или 6*10^18 (шесть миллиардов миллиардов) электронов в секунду. На этом фоне две тысячи миллиардов свободных электронов, да еще разбросанных по огромному кристаллу, вряд ли могут обеспечить прохождение больших токов. Хотя, благодаря тепловому движению, небольшая проводимость у германия существует. Это так называемая собственная проводимость.

Электронная и дырочная проводимость

При повышении температуры электронам сообщается дополнительная энергия, их тепловые колебания становятся более энергичными, в результате чего некоторым электронам удается оторваться от своих атомов. Эти электроны становятся свободными и при отсутствии внешнего электрического поля совершают хаотические движения, перемещаются в свободном пространстве.

Атомы, потерявшие электроны, беспорядочных движений совершать не могут, а только слегка колеблются относительно своего нормального положения в кристаллической решетке. Такие атомы, потерявшие электроны, называется положительными ионами. Можно считать, что на месте электронов, вырванных из своих атомов, получаются свободные места, которые принято называть дырками.

В целом количество электронов и дырок одинаково, поэтому дырка может захватить электрон, оказавшийся поблизости. В результате атом из положительного иона вновь становится нейтральным. Процесс соединения электронов с дырками называется рекомбинацией.

С такой же частотой происходит и отрыв электронов от атомов, поэтому в среднем количество электронов и дырок для конкретного полупроводника равно, является величиной постоянной и зависимой от внешних условий, прежде всего температуры.

Если к кристаллу полупроводника приложить напряжение, то движение электронов станет упорядоченным, через кристалл потечет ток, обусловленный его электронной и дырочной проводимостью. Эта проводимость называется собственной, о ней уже было упомянуто чуть выше.

Но полупроводники в чистом виде, обладающие электронной и дырочной проводимостью, для изготовления диодов, транзисторов и прочих деталей непригодны, поскольку основой этих приборов является p-n (читается «пэ-эн») переход.

Чтобы получить такой переход, необходимы полупроводники двух видов, двух типов проводимости (p — positive — положительный, дырочный) и (n — negative — отрицательный, электронный). Такие типы полупроводников получаются путем легирования, добавления примесей в чистые кристаллы германия или кремния.

Хотя количество примесей очень мало, их присутствие в немалой степени изменяет свойства полупроводника, позволяет получить полупроводники разной проводимости. Об этом будет рассказано в следующей части статьи.

Борис Аладышкин,

Часто начинающие мастера-любители (бывают и профессиональные электрики), совершая электромонтажные работы, называют провод кабелем и наоборот. Стоит учесть, что это совершенно разные изделия, имеющие различное назначение и характеристики. Чтобы понять, чем отличается кабель от провода, необходимо прибегнуть к изучению ГОСТов и подробному рассмотрению фактических различий между ними.

Кабеля и их классификация

Кабель – это одна жила или группа жил с изолирующим слоем, которые определенным образом сплетены между собой и заключены в единую одну или несколько оболочек. Могут укладываться по фасаду зданий, в воздухе на опорах (столбах), под землей и даже на дне водоемов (морей).

Внешняя оболочка может изготавливаться из различных материалов: сшитого полиэтилена, резины и даже из сплава металлов (броня) и иных веществ. Этот общий изолирующий слой кабеля призван защитить жилы от повреждений механического характера, воздействий окружающей среды и разнообразных химикатов.

Кабеля разделяются на группы по применению. Выделяют следующие классы этой продукции:

  1. Коммуникационный кабель. Такое изделия предназначается для систем сигнализации (оповещения) и проводной электросвязи (стационарная телефонная связь);
  2. Силовые изделия. Этот класс предназначен для перемещения электрической энергии от источника к конечному потребителю. Обычно прокладываются стационарно, образуя разнотипные линии электропередач (ЛЭП). Жилы в основном изготавливаются из алюминия и меди. Отличаются огромным модельным разнообразием и долгим сроком службы – до 40 лет;
  3. Монтажные электрокабеля (контрольные). Эта продукция необходима для межприборной установки электроустройств. Токопроводящие жилы обычно изготавливаются из медного соединения. Главное достоинство – высокая устойчивость к работе в повышенных температурах;
  4. Кабеля управления. Эти изделия применяются для освещения и схем управления в сложных механизмах и станках. Максимальное напряжение – 600В;
  5. Оптические и радиочастотные варианты. Такие электрокабеля служат для передачи сигналов и энергии в установленном оптическом диапазоне или на конкретных радиочастотах. Пример использования – сеть интернет, современная телефонная связь, локационное оборудование.

На заметку. Иногда кабели связи, оптические и радиочастотные аналоги относят к одной большой группе – коммуникационные электрокабеля.

Кабельная продукция также отличается между собой по нижеследующим признакам:

  • материал изготовления и свойства изолирующего слоя (слоев);
  • параметры экранирования;
  • технические характеристики, выраженные электрофизическими величинами;
  • материал изготовления и количество токопроводящих жил;
  • общее сечение изделия, диаметр жил и прочие.

Провода и их классификация

В ГОСТе 15845-80 объясняется, что такое провод. Кабельное соединение, которое содержит одну или группу проволок (или жилок), имеющих легкую оболочку не из металлических сплавов, называется проводом. Также этот технический регламент характеризует провод по способу прокладки – он не может монтироваться под землей, это является первым отличием кабеля от провода.

Провода классифицируются по ряду признаков и свойств:

  • тип материала и характеристики изоляционного слоя;
  • материал изготовления проволок;
  • диаметр (сечение) изделия;
  • проводимость и прочие.

Эти признаки предопределяют сферу применения проводниковой продукции. Провода могут быть:

  • автомобильными;
  • обмоточными;
  • изолированными и неизолированными (последние применяются в воздушных ЛЭП);
  • соединительными;
  • монтажными и прочими.

Важно! Более подробно про качественные и количественные характеристики, классификацию изделий электротехнического назначения, в том числе проводов и кабелей, можно узнать из ГОСТа 15845-80 и международного стандарта ISO11801-2002.

Отличия кабеля от провода

По внешнему виду электрокабеля и провода имеют определенное сходство, однако различия между ними есть, которые отлично видны профессионалу.

Изоляционный слой жил

Основным отличием между рассматриваемыми изделиями является присутствие в кабеле отдельного изоляционного слоя каждой токопроводящей жилы. В то время как провод или скрутка проводников имеет общую оболочку или же не имеет ее вообще. Это разграничение описывается в ГОСТе 15845-80.

Таким образом, если каждый в отдельности проводник имеет собственную изоляцию, то изделие именуется кабелем. А когда изоляция отсутствует, или некоторое число неизолированных проводниковых элементов (проволоки) заключены в общую изоляцию, то изделие называется проводом.

Маркирование изделий

Отличить кабельную продукцию от обычных проводов можно также посредством правильного чтения обозначений. Каждое электротехническое изделие имеет свою маркировку, которая выражается буквенными, цифровыми символами и цветом.

Маркировка проводников может рассказать не только о том, к какому виду они относятся, но и о материале изготовления изоляционной оболочки и жилы, количестве и диаметре жил, сфере применения и прочую информацию.

Например, если изделие имеет клеймо АВВГнг 3х2,5, то оно расшифровывается следующим образом:

  • А – жила из алюминия;
  • В – изоляционный слой жил из ПВХ-материала (поливинилхлорида);
  • В – общая изоляционная оболочка также изготовлена из ПВХ;
  • Г – отсутствие брони;
  • нг – изделие не поддерживает горение;
  • 3х2,5 – три жилы сечением 2,5 мм2.

Из расшифровки видно, что каждая жила имеет свою изоляцию и общую оболочку, соответственно, это изделие – кабель. Наличие в маркировке символа «Э» означает, что кабель имеет экран, Р – защиту из резинового материала, Б – броню от горения и агрессивных сред, Ш – защитная оболочка кабеля представлена в виде шланга и так далее.

Маркирование проводов отличается от кабелей лишь другим значением некоторых символов. Например, если перед человеком лежит продукция марки ПуГВ, то это установочный провод, имеющий изоляцию из ПВХ-материала и отличающийся повышенными характеристиками гибкости.

Важно! Из-за огромного количества всевозможных комбинаций символов в маркировке электрокабельных продуктов прочесть ее иногда бывает затруднительно. В таких случаях рекомендуется прибегнуть к помощи специальных справочников или ресурсов в интернете.

Условия использования

Кабель нашел более широкое употребление в специальных условиях в отличие от провода, так как имеет усиленную защиту от разнообразных повреждений. Все подземные и подводные коммуникации выполняются только им. Также они прокладываются в пожароопасных объектах, шахтах, помещениях с высокой коррозийной активностью и прочих.

Провода из-за меньшей защиты применяются в основном внутри электротехнических устройств, электрораспределителях, в качестве квартирной проводки – за их пределами рекомендуется применять токопроводящие шины или кабеля.

Интересно знать. Кабельная продукция имеет более длительный срок эксплуатации и большую пропускную способность (выше сила и напряжения пропускаемого тока) из-за многослойной изоляции, возможного наличия экранов и слоев брони.

Крайне важно отличать кабеля от проводов, так как неправильное их применение небезопасно. Зная вышеописанные понятия и различия между кабельной и проводниковой продукцией, вопрос «провод это или кабель» точно не возникнет.

Видео