В чем особенности образования планет гигантов. Планеты-гиганты - О'Пять пО физике! Особенности строения планет-гигантов

Планеты-гиганты - самые большие тела Солнечной системы после Солнца: Юпитер, Сатурн, Уран и Нептун. Они располагаются за Главным поясом астероидов и поэтому их ещё называют "внешними" планетами.
Юпитер и Сатурн - газовые гиганты, то есть они состоят в основном из газов, находящихся в твёрдом состоянии: водорода и гелия.
А вот Уран и Нептун были определены как ледяные гиганты, поскольку в толще самих планет вместо металлического водорода находится высокотемпературный лёд.
Планеты-гиганты во много раз больше Земли, но по сравнению с Солнцем, они совсем не большие:

Компьютерные расчёты показали, что планеты-гиганты играют важную роль в деле защиты внутренних планет земной группы от астероидов и комет.
Не будь этих тел в Солнечной системе, наша Земля в сотни раз чаще подвергалась бы падению астероидов и комет!
Как же планеты-гиганты защищают нас от падений незванных гостей?

Вы наверняка слышали о "космическом слаломе", когда автоматические станции, направляемые к далёким объектам Солнечной системы, совершают "гравитационные манёвры" около некоторых планет. Они подходят к ним по заранее расчитанной траектории и, используя силу их притяжения, разгоняются ещё сильнее, но не падают на планету, а "выстреливают" слово из пращи с ещё большей скоростью, чем на входе и продолжают своё движение. Тем самым экономится топливо, которое было бы нужно для разгона одними только двигателями.
Точно также планеты-гиганты выбрасывают за пределы Солнечной системы астероиды и кометы, которые пролетают мимо них, пытаясь прорваться к внутренним планетам, в том числе к Земле. Юпитер, со своими собратьями, увеличивает скорость такого астероида, сталкивает его со старой орбиты, тот вынужденно меняет свою траекторию и улетает в космическую бездну.
Так что, без планет-гигантов , жизнь на Земле вероятно была бы невозможна из-за постоянных метеоритных бомбардировок.

Ну, а теперь вкратце познакомимся с каждой из планет-гигантов.

Юпитер - самая большая планета-гигант.

Первым по порядку от Солнца, из планет-гигантов, идёт Юпитер. Это и самая большая планета Солнечной системы.
Иногда говорят, что Юпитер - не состоявшаяся звезда. Но, чтобы запустить собственный процесс ядерных реакций, Юпитеру не хватает массы, причём довольно много. Хотя, масса потихоньку растёт за счёт поглощения межпланетного вещества - комет, метеоритов, пыли и солнечного ветра. Один из вариантов развития Солнечной системы показывает, что если так пойдёт и дальше, то Юпитер вполне может стать звездой или коричневым карликом. И тогда наша Солнечная станет двойной звёздной ситемой. Кстати, двойные звёздные системы - обычное дело в окружающем нас Космосе. Одиночных звёзд, вроде нашего Солнца, - гораздо меньше.

Существуют расчёты, показывающие, что уже сейчас Юпитер излучает больше энергии, чем поглощает её от Солнца. И если это действительно так, то ядерные реакции уже должны идти, иначе энергии взяться просто неоткуда. А это уже признак именно звезды, а не планеты...


На этом снимке видно и знаменитое Большое Красное Пятно, его ещё называют "глазом Юпитера". Это гигантский вихрь, который существует по-видимому уже не одну сотню лет.

В 1989 году к Юпитеру был запущен аппарат "Галилео". За 8 лет работы, он сделал уникальные снимки самой планеты-гиганта, спутников Юпитера, а также провёл множество измерений.
Что творится в атмосфере Юпитера и в его недрах - остаётся только догадываться. Зонд аппарата "Галилео" спустившися в его атмосферу на 157 км., выдержал всего 57 минут, после чего был раздавлен давлением в 23 атмосферы. Но, он успел сообщить о мощных грозах и ураганных ветрах, также передал данные о составе и температуре.
Ганимед, самый большой из спутников Юпитера , является и самым большим из спутников планет в Солнечной системе.
В самом начале исследований, в 1994 году "Галилео" наблюдал падение кометы Шумейкеров-Леви на поверхность Юпитера и прислал изображения этой катастрофы. С Земли это событие наблюдать было нельзя - только остаточные явления, которые стали видны по мере вращения Юпитера.

Далее идёт не менее знаменитое тело Солнечной системы - планета-гигант Сатурн, который известен прежде всего благодаря своим кольцам. Кольца Сатурна состоят из частичек льда, размером от пылинок до довольно больших кусков льда. При внешнем диаметре колец Сатурна 282000 километров, их толщина - всего около ОДНОГО километра. Поэтому, при взгляде сбоку, кольца Сатурна не видны.
Но, у Сатурна есть и спутники. Сейчас открыто около 62 спутников Сатурна.
Самый большой спутник Сатурна - Титан, размер которого больше планеты Меркурий! Но, он состоит в значительной мере из замёрзшего газа, то есть легче Меркурия. Если Титан переместить на орбиту Меркурия, то лёдяной газ испарится и размеры Титана сильно уменьшатся.
Ещё один интересный спутник Сатурна - Энцелад, привлекает учёных тем, что под его ледяной поверхностью есть океан жидкой воды. А если так, то в ней возможна и жизнь, ведь и температуры там положительные. На Энцеладе открыты мощные водяные гейзеры, бьющие в высоту на сотни километров!

Исследовательская станция "Кассини" находится на орбите Сатурна с 2004 года. За это время собрано множество данных о самом Сатурне, его спутниках и кольцах.
Так же осуществлена посадка автоматической станции "Гюйгенс" на поверхность Титана, одного из спутников Сатурна. Это была первая в истории посадка зонда на поверхность небесного тела во Внешней части Солнечной системы.
Несмотря на свои значительные размеры и массу, плотность Сатурна примерно в 9.1 раза меньше плотности Земли. Поэтому, ускорение свободного падения на экваторе - всего 10,44 м/с². То есть, совершив там посадку, мы бы не почувствовали возросшей силы тяжести.

Уран - ледяной гигант.

Атмосфера Урана состоит из водорода и гелия, а недра - изо льда и твёрдых горных пород. Уран выглядит довольно спокойной планетой, в отличие от буйного Юпитера, но всё-же в его атмосфере были замечены вихри. Если Юпитер и Сатурн называют газовыми гигантами, то Уран и Нептун - ледяные гиганты, поскольку в их недрах отсутствует металлический водород, а вместо него много льда в различных высокотемпературных состояниях.
Уран выделяет очень мало внутреннего тепла и поэтому является самой холодной из планет Солнечной системы - на нём зарегистрирована темперутура -224°С. Даже на Нептупне, который находится дальше от Солнца - и то теплее.
У Урана есть спутники, но они не очень крупные. Самый большой из них, Титания, в диаметре более чем в два раза меньше нашей Луны.

Нет, я не забыл повернуть фотографию:)

В отличие от других планет Солнечной системы, Уран как бы лежит на боку - его собственная ось вращения лежит почти в плоскости вращения Урана вокруг Солнца. Поэтому, он поворачивается к Солнцу то Южным, то Северным полюсами. То есть, солнечный день на полюсе длится 42 года, а потом сменяется на 42 года "полярной ночи", во время которой освещён противоположный полюс.

Этот снимок сделан телескопом Хаббл в 2005 году. Видны кольца Урана, светло окрашенный южный полюс и яркое облако в северных широтах.

Оказывается, не только Сатурн украсил себя кольцами!

Любопытно, что все планеты носят имена римских богов. И только Уран назван именем бога из древнегреческой мифологии.
Ускорение свободного падения на экваторе Урана - 0,886 g. То есть, сила тяжести на этой планете-гиганте даже меньше чем на Земле! И это несмотря на его огромную массу... Виной этому - опять же малая плотность ледяного гиганта Урана.

Космические аппараты пролетали мимо Урана, делая попутно снимки, но детальных исследований пока не проводилось. Правда, NASA планирует отправить к Урану исследовательскую станцию в 2020-ых годах. Есть планы и у Европейского космического агентства.

Нептун - самая дальняя планета Солнечной системы, после того, как Плутон "разжаловали" в "карликовые планеты". Как и остальные планеты-гиганты, Нептун значительно больше и тяжелее Земли.
Нептун, как и Сатурн, является ледяной планетой-гигантом.

Нептун находится довольно далеко от Солнца и поэтому стал первой планетой, открытой благодаря математическим вычислениям, а не при помощи прямых наблюдений. Планета была зрительно обнаружена в телескоп 23 сентября 1846 года астрономами Берлинской обсерватории, на основании педварительных расчётов француского астронома Леверье.
Любопытно, что судя по рисункам, Галилео Галией наблюдал Нептун задолго до этого, ещё в 1612 году, в свой первый телескоп! Но... он не распознал в нём планету, приняв за неподвижную звезду. Поэтому, Галилей не считается первооткрывателем планеты Нептун.

Несмотря на свои значительные размеры и массу, плотность Нептуна примерно в 3,5 раза меньше плотности Земли. Поэтому, на экваторе сила тяжести - всего 1,14 g, то есть почти как на Земле, как и у двух предыдущих планет-гигантов.

 или расскажите друзьям:

). Все эти планеты (и особенно Юпитер!) имеют большие размеры и массы. Например, по объему Юпитер превосходит Землю почти в 1320 раз, а по массе – в 318 раз. Обратите внимание на низкую среднюю плотность (наименьшая она у Сатурна – 0,7 10 3 кг/м 3).

Планеты-гиганты очень быстро вращаются вокруг своих осей; менее 10 ч требуется огромному Юпитеру, чтобы совершить один оборот. Причем, как выяснилось в результате наземных оптических наблюдений, экваториальные зоны планет-гигантов вращаются быстрее, чем полярные, т.е. там, где максимальны линейные скорости точек в их движении вокруг оси, максимальны и угловые скорости. Результат быстрого вращения – большое сжатие планет-гигантов (заметное при визуальных наблюдениях). Разность экваториального и полярного радиусов Земли составляет 21 км, а у Юпитера она равна 4400 км.

Планеты-гиганты находятся далеко от Солнца, и независимо от характера смены времен года на них всегда господствуют низкие температуры. На Юпитере вообще нет смены времен года, поскольку ось этой планеты почти перпендикулярна к плоскости ее орбиты. Своеобразно происходит смена времен года и на планете Уран, так как ось этой планеты наклонена к плоскости орбиты под углом 8°.

Планеты-гиганты отличаются большим числом спутников; у Юпитера их обнаружено к настоящему времени 16, Сатурна – 17, Урана – 16 и только у Нептуна – 8. Замечательная особенность планет-гигантов – кольца, которые открыты не только у Сатурна, но и у Юпитера, Урана и Нептуна. Из планет-гигантов лучше других исследованы Юпитер и Сатурн.

Особенности строения

Важнейшая особенность строения планет-гигантов заключается в том, что эти планеты не имеют твердых поверхностей. Такое представление хорошо согласуется с малыми средними плотностями планет-гигантов, их химическим составом (они состоят в основном из легких элементов – водорода и гелия), быстрым зональным вращением и некоторыми другими данными. Следовательно, все, что удается рассмотреть на Юпитере и Сатурне (на более далеких планетах детали вообще не видны), происходит в протяженных атмосферах этих планет. На Юпитере даже в небольшие телескопы заметны полосы, вытянутые вдоль экватора. В верхних слоях водородно-гелиевой атмосферы Юпитера в виде примесей встречаются химические соединения (например, метан и аммиак), углеводороды (этан, ацетилен), а также различные соединения (в том числе содержащие фосфор и серу), окрашивающие детали атмосферы в красно-коричневые и желтые цвета. Таким образом, по своему химическому составу планеты-гиганты резко отличаются от планет земной группы. Это отличие связанно с процессом образования планетной системы.

На фотографиях, переданных с борта американских АМС “Пионер” и “Вояджер”, отчетливо видно, что газ в атмосфере Юпитера участвует в сложном движении, которое сопровождается образованием и распадом вихрей. Предполагается, что наблюдаемое на Юпитере около 300 лет Большое Красное Пятно (овал с полуосями 15 и 5 тыс. км) тоже представляет собой огромный и очень устойчивый вихрь.

Потоки движущегося газа и устойчивые пятна видны и на снимках Сатурна, переданных автоматическими межпланетными станциями.

“Вояджер-2” дал возможность рассмотреть и детали атмосферы Нептуна.

Вещество, находящееся под облачным слоем планет-гигантов, недоступно непосредственному наблюдению. О его свойствах можно судить по некоторым дополнительным данным. Например, предполагают, что в недрах планет-гигантов вещество должно иметь высокую температуру. Как же такой вывод был сделан? Во-первых, зная расстояние Юпитера от Солнца, вычислили количество теплоты, которое Юпитер от него получает. Во-вторых, определили отражательную способность атмосферы, что позволило узнать, сколько солнечной энергии планета отражает в космическое пространство. Наконец, вычислили температуру, которую должна иметь планета, находящаяся на известном расстоянии от Солнца. Она оказалась близкой к -160°С. Но температуру планеты можно определить и непосредственно, исследуя ее инфракрасное излучение с помощью наземной аппаратуры или приборов, установленных на борту АМС. Такие измерения показали, что температура Юпитера близка к – 130°С, т.е. выше расчетной. Следовательно, Юпитер излучает энергии почти в 2 раза больше, чем получает от Солнца. Это и позволило сделать вывод о том, что планета обладает собственным источником энергии.

Совокупность всех имеющихся сведений о планетах-гигантах дает возможность построить модели внутреннего строения этих небесных тел, т.е. рассчитать, каковы плотность, давление и температура в их недрах. Например, температура вблизи центра Юпитера достигает нескольких десятков тысяч кельвинов.

В отличие от планет земной группы, обладающих корой, мантией и ядром, на Юпитере газообразный водород, входящий в состав атмосферы, переходит в жидкую, а затем и в твердую (металлическую) фазу. Появление таких необычных агрегатных состояний водорода (в последнем случае он становится проводником электричества), связанно с резким увеличением давления по мере погружения в глубину. Так, на глубине, несколько большей 0,9 радиуса планеты, давление достигает 40 млн. атм (4 10 12 Па).

Возможно, что с быстрым вращением проводящего ток вещества, находящегося в центральных областях планет-гигантов, связано существование значительных магнитных полей этих планет. Особенно велико магнитное поле Юпитера. Оно во много раз превосходит магнитное поле Земли, причем полярность его обратна земной (как вы знаете, у Земли вблизи северного географического полюса расположен южный магнитный). Магнитное поле планеты улавливает летящие от Солнца заряженные частицы (ионы, протоны, электроны и др.), которые образуют вокруг планеты пояса частиц высоких энергий, называемые радиационными поясами. Такие пояса из всех планет земной группы есть только у нашей планеты. Радиационный пояс Юпитера простирается на расстояние до 2,5 млн.км. Он в десятки раз интенсивнее земного. Электрически заряженные частицы, движущиеся в радиационном поясе Юпитера, излучают радиоволны в диапазоне дециметровых и декаметровых волн. Как и на Земле, на Юпитере наблюдается полярные сияния, связанные с прорывом заряженных частиц из радиационных поясов в атмосферу, а также мощные электрические разряды в атмосфере (грозы).

Спутники

Система спутников Юпитера напоминает Солнечную систему в миниатюре. Четыре спутника, открытые Галилеем, называют галилеевыми спутниками. Это Ио, Европа, Ганимед и Каллисто. Самый большой из них – Ганимед – превосходит по размерам (но вдвое уступает этой планете по массе). Пролетая вблизи спутников Юпитера (а потом Сатурна), американские автоматические межпланетные станции “Пионер” и “Вояджер” передали на Землю фотографии с изображением их поверхностей, которые напоминают поверхности Луны и планет земной группы. Особенно похож на Луну Ганимед. Кроме кратеров, на Ганимеде много длинных хребтов и полос, образующих своеобразные ветвящиеся пучки. Уникальна поверхность Ио, на которой открыты действующие вулканы, и она буквально вся залита продуктами их извержения. Очень много кратеров на Каллисто. На фотографиях этого спутника видна многокольцевая структура (“Бычий глаз”) диаметром 600 км с системой концентрических колец (до 2600 км в диаметре), вероятно, порожденная ударом метеорита. Поверхность Европы испещрена тянущимися на несколько тысяч километров темными и светлыми трещинами (шириной 20-40 км). Самый близкий к Юпитеру спутник Амальтея, а также все далекие спутники, находящиеся за пределами орбит галилеевых спутников, имеют неправильную форму и этим напоминают малые планеты Солнечной системы (астеройды).

Сфотографированы с близкого расстояния и некоторые спутники Сатурна. На поверхности этих небесных тел тоже обнаружено много кратеров. Некоторые из них очень велики (диаметр кратера на спутнике Тефия около 400 км, а на спутнике Мимас около 130 км). Из спутников Сатурна особый интерес представляет Титан, который обладает атмосферой. Она почти целиком состоит из азота, причем плотность и давление атмосферы у поверхности Титана превосходят соответствующие параметры атмосферы Земли. Масса Титана почти в 2 раза, а радиус (около 2580 км) в 1,5 раза больше соответственно массы и радиуса Луны. Следовательно, Титан, как и Ганимед, радиус которого около 2640 км, - очень крупный спутник. Один из интереснейших спутников Урана – Миранда. Замечателен и Тритон – самый большой спутник Нептуна. Диаметр Тритона 2705 км. На Тритоне имеется и атмосфера, в основном состоящая из азота. Как и многие другие спутники планет-гигантов, Тритон – силикатно-ледяное небесное тело. На нем обнаружены кратеры, полярные шапки (из замерзшего азота и, возможно, водного льда) и даже газовые гейзеры.

Кольца

Первыми были открыты кольца Сатурна (XVII в., Галилей, Гюйгенс). Еще в XIX в. английский физик Дж. Максвелл (1831-1879), изучавший устойчивость движения колец Сатурна, а также русский астрофизик А.А. Белопольский (1854-1934) доказали, что кольца Сатурна не могут быть сплошными. С Земли в лучшие телескопы видно несколько колец, разделенных промежутками. Но на фотографиях, переданных с АМС, видно множество колец. Кольца очень широкие: они простираются над облачным слоем планеты на 60 000 км. Каждое состоит из частиц и глыб, движущихся по своим орбитам вокруг Сатурна. Толщина же колец не более 1 км. Поэтому, когда при своем движении вокруг Солнца оказывается в плоскости колец Сатурна (это случается в 14-15 лет, так было в 1994 г.), кольца перестают быть видимыми: нам кажется, что они исчезают. Не исключено, что вещество, из которого состоят кольца, не вошло в состав планет и их больших спутников во время формирования этих небесных тел.

В 1977 г. были открыты кольца у Урана, в 1979 г. – у Юпитера, в 1989 г. – у Нептуна. На возможность существования колец у всех планет-гигантов еще в 1960 г. указывал известный астроном С.К. Всехсвятский (1905-1984).

Решебник по астрономии 11 класс на урок №14 (рабочая тетрадь) - Планеты-гиганты

1. Пользуясь справочниками, заполните таблицу с основными физическими характеристиками планет-гигантов.

Физические характеристики планет Юпитер Сатурн Уран Нептун
Масса (в массах Земли) 318 95.2 14.5 17.2
Диаметр (в диаметрах Земли) 11.2 9.5 4 3.9
Плотность, кг/м^3 1270 690 1290 1640
Период вращения 9 ч 55 мин 10 ч 40 мин 17 ч 14 мин 16 ч 7 мин
Атмосфера: температура, °C; химический состав 90% H, 10% He 96% H, 4% He 83% H, 15% He, 2% CH(4) 80% H, 19% He, 1% CH(4)
Число спутников 63 61 27 13
Названия самых крупных спутников Ио, Европа, Ганимед, Каллисто, Амальтея Титан, Рея, Япет, Диона, Тефия Ариэль, Оберон, Умбриэль, Дездемона, Джульетта Тритон, Нереида, Протей, Ларисса, Таласса

Заполнив таблицу, сделайте выводы и укажите сходства и различия между планетами-гигантами.

Выводы: Это газообразные тела с мощным протяжёнными атмосферами, быстро вращаются вокруг своих осей, имеют много спутников, также все они обладают кольцами. У планет-гигантов нет ни твёрдой не жидкой поверхности. Основные компоненты всех планет-гигантов - гелий и водород.

2. Проведите качественное сравнение свойств планет земной группы и планет-гигантов. Используйте при этом слова: «высокая», «низкая», «большая» и т. п. В выводе укажите принципиальное отличие планет земной группы от планет-гигантов.

Вывод: Планеты земной группы обладают значительно меньшими массами и размерами, но большей плотностью, не имеют колец. Они ближе расположены к Солнцу и быстрее движутся по своим орбитам, но медленнее вращаются вокруг своей оси и меньше сжаты у полюсах. Также они имеют значительно меньше спутников.

3. Закончите предложения.

Особенностью вращения планет-гигантов вокруг оси является то, что они вращаются слоями: слой планеты вблизи экватора вращается быстрее других слоёв.

Наличие у Юпитера и Сатурна плотных и протяжённых атмосфер объясняется тем, что при формировании они быстро достигли такой массы, чтобы удержать больше кислорода.

Спутник Сатурна Титан обладает мощной атмосферой, состоящей в основном из азота.

Планеты-гиганты имеют малую среднюю плотность по причине того, что их атмосферы имеют в основном водородо-гелевый состав.

Существование колец обнаружено у следующих планет-гигантов: Юпитер, Сатурн, Уран и Нептун.

Юпитер излучает значительно больше тепловой энергии, чем получает её от Солнца. Причиной этого можно считать постепенное сжатие планеты и процесса радиоактивного распада в её недрах.

4. Звёздный период вращения Сатурна вокруг Солнца T = 29.5 года. Какого среднее расстояние от Сатурна до Солнца?

5. Какой вид будет иметь кольцо Сатурна для наблюдателя, находящегося на экваторе и на полюсах Сатурна?

6. Закончите предложения, касающиеся внутреннего строения планет-гигантов.

У планет Юпитер и Сатурн между центральным ядром и протяжённой атмосферой имеется оболочка со свойствами металла.

Планеты-гиганты, как и Земля, обладают магнитным полем, напряжённость которого

у Юпитера в 12 раз выше, чем у Земли;
у Сатурна близка к земной;
у Урана примерно равна земной;
у Нептуна в 3 раза меньше, чем у Земли.

Полярные сияния были отмечены у следующих планет-гигантов: Юпитер, Сатурн и Уран.

Наша Солнечная система, если иметь в виду ее вещество, состоит из Солнца и четырех планет-гигантов, а еще проще − из Солнца и Юпитера, поскольку масса Юпитера больше, чем всех прочих околосолнечных объектов – планет, комет, астероидов − вместе взятых. Фактически, мы живем в двойной системе Солнце-Юпитер, а вся остальная «мелочь» подчиняется их гравитации

Сатурн вчетверо меньше Юпитера по массе, но по составу похож на него: он тоже в основном состоит из легких элементов – водорода и гелия в отношении 9:1 по количеству атомов. Уран и Нептун еще менее массивны и по составу богаче более тяжелыми элементами – углеродом, кислородом, азотом. Поэтому группу из четырех гигантов обычно делят пополам, на две подгруппы. Юпитер и Сатурн называют газовыми гигантами, а Уран и Нептун – ледяными гигантами. Дело в том, что Уран и Нептун обладают не очень толстой атмосферой, а большая часть их объема – это ледяная мантия; т. е. довольно твердое вещество. А у Юпитера и Сатурна почти весь объем занят газообразной и жидкой «атмосферой». При этом все гиганты имеют железокаменные ядра, превышающие по массе нашу Землю.

На первый взгляд, планеты-гиганты примитивны, а маленькие планеты намного интереснее. Но может быть это потому, что мы пока плохо знаем природу этих четырех гигантов, а не потому что они малоинтересны. Просто мы с ними слабо знакомы. Например, к двум ледяным гигантам − Урану и Нептуну − за всю историю астрономии лишь однажды приближался космический зонд («Вояджер-2», NASA, 1986 и 1989 гг.), да и то – пролетел, не останавливаясь, мимо них. Много ли он мог там увидеть и измерить? Можно сказать, что к исследованию ледяных гигантов мы еще по-настоящему не приступали.

Газовые гиганты изучены намного детальнее, поскольку кроме пролетных аппаратов («Пионер-10 и 11», «Вояджер-1 и 2», «Улисс», «Кассини», «Новые горизонты», NASA и ESA) рядом с ними длительно работали искусственные спутники: «Галилео» (NASA) в 1995-2003 гг. и «Джуно» (NASA) с 2016 г. исследовали Юпитер, а «Кассини» (NASA и ESA) в 2004-2017 гг. изучал Сатурн.

Наиболее глубоко был исследован Юпитер, причем – в прямом смысле: в его атмосферу с борта «Галилео» был сброшен зонд, который влетел туда со скоростью 48 км/с, раскрыл парашют и за 1 час опустился на 156 км ниже верхней кромки облаков, где при внешнем давлении 23 атм и температуре 153 °C прекратил передавать данные, по-видимому, из-за перегрева. На траектории спуска он измерил многие параметры атмосферы, включая даже ее изотопный состав. Это заметно обогатило не только планетологию, но и космологию. Ведь гигантские планеты не отпускают от себя вещество, они навечно сохраняют то, из чего они родились; особенно это касается Юпитера. У его облачной поверхности вторая космическая скорость составляет 60 км/с; ясно, что ни одной молекуле оттуда никогда не уйти.

Поэтому мы думаем, что изотопный состав Юпитера, особенно состав водорода, характерен для самых первых этапов жизни, по крайней мере, Солнечной системы, а, может быть, и Вселенной. И это очень важно: соотношение тяжелого и легкого изотопов водорода говорит о том, как в первые минуты эволюции нашей Вселенной протекал синтез химических элементов, какие физические условия тогда были.

Юпитер быстро вращается, c периодом около 10 часов; а поскольку средняя плотность планеты невелика (1,3 г/см 3), центробежная сила заметно деформировала ее тело. При взгляде на планету можно заметить, что она сжата вдоль полярной оси. Степень сжатия Юпитера, т. е. относительная разница между его экваториальным и полярным радиусами составляет (R экв − R пол)/R экв = 0,065. Именно средняя плотность планеты (ρ ∝ M/R 3) и ее суточный период (T ) определяют форму ее тела. Как известно, планета – это космическое тело в состоянии гидростатического равновесия. На полюсе планеты действует только сила тяготения (GM/R 2), а на экваторе ей противодействует центробежная сила (V 2 /R = 4π 2 R 2 /RT 2). Их отношением и определяется форма планеты, поскольку давление в центре планеты не должно зависеть от направления: экваториальная колонка вещества должна весить столько же, сколько полярная. Отношение этих сил (4π 2 R /T 2)/(GM /R 2) ∝ 1/(M/R 3)T 2 ∝ 1/(ρT 2). Итак, чем меньше плотность и продолжительность суток, тем сильнее сжата планета. Проверим: средняя плотность Сатурна 0,7 г/см 3 , период его вращения 11 час, − почти такой же, как у Юпитера, − а сжатие 0,098. Сатурн сжат в полтора раза сильнее Юпитера, и это легко заметить при наблюдении планет в телескоп: сжатие Сатурна бросается в глаза.

Быстрое вращение планет-гигантов определяет не только форму их тела, а значит и форму их наблюдаемого диска, но и его внешний вид: облачная поверхность планет-гигантов имеет зональную структуру с полосами разного цвета, вытянутыми вдоль экватора. Потоки газа движутся быстро, со скоростями во многие сотни километров в час; их взаимное смещение вызывает сдвиговую неустойчивость и совместно с силой Кориолиса порождает гигантские вихри. Издалека заметны Большое Красное Пятно на Юпитере, Большой Белый Овал на Сатурне, Большое Темное Пятно на Нептуне. Особенно знаменит антициклон Большое Красное Пятно (БКП) на Юпитере. Когда-то БКП было вдвое больше нынешнего, его видели еще современники Галилея в свои слабенькие телескопы. Сегодня БКП побледнело, но все-таки этот вихрь уже почти 400 лет живет в атмосфере Юпитера, поскольку охватывает гигантскую массу газа. Его размер больше земного шара. Такая масса газа, единожды закрутившись, не скоро остановится. На нашей планете циклоны живут примерно неделю, а там − столетия.

В любом движении рассеивается энергия, а значит требуется ее источник. Каждая планета обладает двумя группами источников энергии – внутренними и внешними. Извне на планету льется поток солнечного излучения и падают метеороиды. Изнутри планету греет распад радиоактивных элементов и гравитационное сжатие самой планеты (механизма Кельвина - Гельмгольца). . Хотя мы уже видели, как на Юпитер падают крупные объекты, вызывающие мощные взрывы (комета Шумейкеров - Леви 9), оценки частоты их падения показывают, что средний поток приносимой ими энергии существенно меньше, чем приносит солнечный свет. С другой стороны, роль внутренних источников энергии неоднозначна. У планет земной группы, состоящих из тяжелых тугоплавких элементов, единственным внутренним источником тепла служит радиоактивный распад, но вклад его ничтожен по сравнению с теплом от Солнца.

У планет-гигантов доля тяжелых элементов существенно ниже, зато они массивнее и легче сжимаются, что делает выделение гравитационной энергии их главным источником тепла. А поскольку гиганты удалены от Солнца, внутренний источник становится конкурентом внешнему: порой планета греет себя сама сильнее, чем ее нагревает Солнце. Даже Юпитер, ближайший к Солнцу гигант, излучает (в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. А энергия, которую излучает в космос Сатурн, в 2,5 раза больше той, которую планета получает от Солнца.

Гравитационная энергия выделяется как при сжатии планеты в целом, так и при дифференциации ее недр, т. е. при опускании к центру более плотного вещества и вытеснении оттуда более «плавучего». Вероятно, работают оба эффекта. Например, Юпитер в нашу эпоху уменьшается приблизительно на 2 см в год. А сразу после формирования он имел вдвое больший размер, сжимался быстрее и был значительно теплее. В своих окрестностях тогда он играл роль маленького солнышка, на что указывают свойства его галилеевых спутников: чем ближе они к планете, тем плотнее и тем меньше содержат летучих элементов (как и сами планеты в Солнечной системе).

Кроме сжатия планеты как целого, важную роль в гравитационном источнике энергии играет дифференциация недр. Вещество разделяется на плотное и плавучее, и плотное тонет, выделяя свою потенциальную гравитационную энергию в виде тепла. Вероятно, в первую очередь, это конденсация и последующее падение капель гелия сквозь всплывающие слои водорода, а также фазовые переходы самого водорода. Но могут быть явления и поинтереснее: например, кристаллизация углерода – дождь из алмазов (!), правда, выделяющий не очень много энергии, поскольку углерода мало.

Внутреннее строение планет-гигантов пока изучается только теоретически. На прямое проникновение в их недра у нас мало шансов, а методы сейсмологии, т. е. акустического зондирования, к ним пока не применялись. Возможно, когда-нибудь мы научимся просвечивать их с помощью нейтрино, но до этого еще далеко.

К счастью, в лабораторных условиях уже неплохо изучено поведение вещества при тех давлениях и температурах, которые царят в недрах планет-гигантов, что дает основания для математического моделирования их недр. Для контроля адекватности моделей внутреннего строения планет есть методы. Два физических поля, – магнитное и гравитационное, − источники которых находятся в недрах, выходят в окружающее планету пространство, где их можно измерять приборами космических зондов.

На структуру магнитного поля действует много искажающих факторов (околопланетная плазма, солнечный ветер), зато гравитационное поле зависит только от распределения плотности внутри планеты. Чем сильнее тело планеты отличается от сферически симметричного, тем сложнее ее гравитационное поле, тем больше в нем гармоник, отличающих его от простого ньютоновского GM/R 2 .

Прибором для измерения гравитационного поля далеких планет, как правило, служит сам космический зонд, точнее – его движение в поле планеты. Чем дальше зонд от планеты, тем слабее в его движении проявляются мелкие отличия поля планеты от сферически симметричного. Поэтому необходимо запускать зонд как можно ближе к планете. С этой целью с 2016 года рядом с Юпитером работает новый зонд Juno (NASA). Он летает по полярной орбите, чего раньше не было. На полярной орбите высшие гармоники гравитационного поля проявляются заметнее, поскольку планета сжата, а зонд время от времени подходит очень близко к поверхности. Именно это дает возможность измерить высшие гармоники разложения гравитационного поля. Но по этой же причине зонд довольно скоро закончит свою работу: он пролетает через наиболее плотные области радиационных поясов Юпитера, и его аппаратура от этого сильно страдает.

Радиационные пояса Юпитера колоссальны. При большом давлении водород в недрах планеты металлизируется: его электроны обобщаются, теряют связь с ядрами, и жидкий водород становится проводником электричества. Огромная масса сверхпроводящей среды, быстрое вращение и мощная конвекция − эти три фактора способствуют генерации магнитного поля за счет динамо-эффекта. В колоссальном магнитном поле, захватывающем летящие от Солнца заряженные частицы, формируются чудовищные радиационные пояса. В их наиболее плотной части лежат орбиты внутренних галилеевых спутников. Поэтому на поверхности Европы человек не прожил и дня, а на Ио – и часа. Даже космическому роботу нелегко там находиться.

Более удаленные от Юпитера Ганимед и Каллисто в этом смысле значительно безопаснее для исследования. Поэтому именно туда Роскосмос собирается в будущем послать зонд. Хотя Европа с ее подледным океаном была бы намного интереснее.

Ледяные гиганты Уран и Нептун выглядят промежуточными между газовыми гигантами и планетами земного типа. По сравнению с Юпитером и Сатурном у них меньше размер, масса и центральное давление, но при этом их относительно высокая средняя плотность указывает на большую долю элементов группы CNO. Протяженная и массивная атмосфера Урана и Нептуна в основном водородно-гелиевая. Под ней водная с примесью аммиака и метана мантия, которую принято называть ледяной. Но у планетологов принято называть «льдами» сами химические элементы группы CNO и их соединения (H 2 O, NH 3 , CH 4 и т. п.), а не их агрегатное состояние. Так что мантия в большей степени может быть жидкой. А под ней лежит сравнительно небольшое железно-каменное ядро. Поскольку концентрация углерода в недрах Урана и Нептуна выше, чем у Сатурна и Юпитера, в основании их ледяной мантии может лежать слой жидкого углерода, в котором конденсируются кристаллы, т. е. алмазы, оседающие вниз.

Подчеркну, что внутреннее строение планет-гигантов активно обсуждается, и конкурирующих моделей пока довольно много. Каждое новое измерение с борта космических зондов и каждый новый результат лабораторного моделирования в установках высокого давления приводят к пересмотру этих моделей. Напомню, что прямое измерение параметров весьма неглубоких слоев атмосферы и только у Юпитера было осуществлено лишь однажды зондом, сброшенным с «Галилео» (NASA). А все остальное – косвенные измерения и теоретические модели.

Магнитные поля Урана и Нептуна слабее, чем у газовых гигантов, но сильнее, чем у Земли. Хотя у поверхности Урана и Нептуна индукция поля примерно такая же, как у поверхности Земли (доли гаусса), но объем, а значит и магнитный момент намного больше. Геометрия магнитного поля у ледяных гигантов очень сложная, далекая от простой дипольной формы, характерной для Земли, Юпитера и Сатурна. Вероятная причина в том, что генерируется магнитное поле в относительно тонком электропроводящем слое мантии Урана и Нептуна, где конвекционные потоки не обладают высокой степенью симметрии (поскольку толщина слоя много меньше его радиуса).

При внешнем сходстве Уран и Нептун нельзя назвать близнецами. Об этом говорит их разная средняя плотность (соответственно 1,27 и 1,64 г/см 3) и разная интенсивность выделения тепла в недрах. Хотя Уран в полтора раза ближе к Солнцу, чем Нептун, и поэтому получает от него в 2,5 раза больше тепла, он холоднее Нептуна. Дело в том, что Нептун выделяет в своих недрах даже больше тепла, чем получает от Солнца, а Уран не выделяет почти ничего. Поток тепла из недр Урана вблизи его поверхности составляет всего 0,042 ± 0,047 Вт/м 2 , что даже меньше чем у Земли (0,075 Вт/м 2). Уран – самая холодная планета в Солнечной системе, хотя и не самая далекая от Солнца. Связано ли это с его странным вращением «на боку»? Не исключено.

Теперь поговорим о кольцах планет.

Все знают, что «окольцованная планета» − это Сатурн. Но при внимательном наблюдении выясняется, что кольца есть у всех планет-гигантов. С Земли их заметить сложно. Например, кольцо Юпитера мы не видим в телескоп, но замечаем его в контровом освещении, когда космический зонд смотрит на планету с ее ночной стороны. Это кольцо состоит из темных и очень мелких частиц, размер которых сравним с длинной волны света. Они практически не отражают свет, но хорошо рассеивают его вперед. Тонкими кольцами окружены Уран и Нептун.

В общем, двух одинаковых колец у планет не бывает, они все разные.

В шутку можно сказать, что и у Земли есть кольцо. Искусственное. Оно состоит из нескольких сотен спутников, выведенных на геостационарную орбиту. На этом рисунке не только геостационарные спутники, но и те, что на низких орбитах, а также на высоких эллиптических орбитах. Но геостационарное кольцо выделяется на их фоне вполне заметно. Впрочем, это рисунок, а не фото. Сфотографировать искусственное кольцо Земли пока никому не удалось. Ведь его полная масса невелика, а светоотражающая поверхность ничтожна. Едва ли суммарная масса спутников в кольце составит 1000 тонн, что эквивалентно астероиду размером 10 м. Сравните это с параметрами колец планет-гигантов.

Заметить какую-либо взаимосвязь между параметрами колец довольно сложно. Материал колец Сатурна белый как снег (альбедо 60 %), а остальные кольца чернее угля (А = 2-3 %). Все кольца тонкие, а у Юпитера довольно толстое. Все из булыжников, а у Юпитера из пылинок. Структура колец тоже разная: одни напоминают граммофонную пластинку (Сатурн), другие – матрешкообразную кучу обручей (Уран), третьи – размытые, диффузные (Юпитер), а кольца Нептуна вообще не замкнуты и похожи на арки.

В голове не укладывается относительно малая толщина колец: при диаметре в сотни тысяч километров их толщина измеряется десятками метров. Мы никогда не держали в руках столь тонкие предметы. Если сравнить кольцо Сатурна с листом писчей бумаги, то при его известной толщине размер листа был бы с футбольное поле!

Как видим, кольца у всех планет различаются по составу частиц, по их распределению, по морфологии – у каждой планеты-гиганта свое уникальное украшение, происхождение которого мы пока не понимаем. Обычно кольца лежат в экваториальной плоскости планеты и вращаются в ту же сторону, куда вращается сама планета и группа близких к ней спутников. В прежние времена астрономы считали, что кольца вечны, что они существуют от момента зарождения планеты и останутся при ней навсегда. Сейчас точка зрения изменилась. Но расчеты показывают, что кольца не слишком долговечны, что их частицы тормозятся и падают на планету, испаряются и рассеиваются в пространстве, оседают на поверхности спутников. Так что украшение это временное, хотя и долгоживущее. Сейчас астрономы считают, что кольцо – это результат столкновения или приливного разрушения спутников планеты. Возможно, кольцо Сатурна самое молодое, поэтому оно такое массивное и богатое летучими веществами (снегом).

А так может сфотографировать хороший телескоп с хорошей камерой. Но здесь еще мы не видим у кольца почти никакой структуры. Давно была замечена темная «щель» − разрыв Кассини, который более 300 лет назад открыл итальянский астроном Джованни Кассини. Кажется, что в разрыве ничего нет.

Плоскость кольца совпадает с экватором планеты. Иного и быть не может, поскольку у симметричной сплющенной планеты вдоль экватора в гравитационном поле потенциальная яма. На серии снимков, полученных с 2004 по 2009 гг., мы видим Сатурн и его кольцо в разных ракурсах, поскольку экватор Сатурна наклонен к плоскости его орбиты на 27°, а Земля всегда недалеко от этой плоскости. В 2004 г. мы точно оказались в плоскости колец. Сами понимаете, при толщине несколько десятков метров самого кольца мы не видим. Тем не менее, черная полоска на диске планеты ощущается. Это тень кольца на облаках. Она видна нам, поскольку Земля и Солнце с разных направлений смотрят на Сатурн: мы смотрим точно в плоскости кольца, но Солнце освещает немножко под другим углом и тень кольца ложится на облачный слой планеты. Раз есть тень, значит в кольце довольно плотно упакованное вещество. Тень кольца исчезает только в дни равноденствия на Сатурне, когда Солнце оказывается точно в его плоскости; и это независимо указывает на малую толщину кольца.

Кольцу Сатурна посвящено много работ. Джеймс Клерк Максвелл, тот самый, что прославился своими уравнениями электромагнитного поля, исследовал физики кольца и показал, что оно не может быть единым твердым предметом, а должно состоять из мелких частиц, иначе центробежная сила его разорвала бы. Каждая частица летит по своей орбите – чем ближе к планете, тем быстрее.

Взгляд на любой предмет с другой стороны всегда полезен. Там, где в прямом свете мы видели черноту, «провал» в кольце, здесь мы видим вещество; просто оно другого типа, по-другому отражает и рассеивает свет

Когда космические зонда прислали нам снимки кольца Сатурна, нас поразила его тонкая структура. Но еще в XIX в выдающиеся наблюдатели на обсерватории Пик-дю-Миди во Франции именно эту структур видели глазом, но им тогда никто особенно не поверил, потому что никто кроме них такие тонкости не замечал. Но оказалось, кольцо Сатурна именно такое. Объяснение этой тонкой радиальной структуре кольца специалисты по звездной динамике ищут в рамках резонансного взаимодействия частиц кольца с массивными спутниками Сатурна вне кольца и мелкими спутниками внутри кольца. В целом теория волн плотности справляется с задачей, но до объяснения всех деталей еще далеко.

На верхнем фото дневная сторона кольца. Зонд пролетает через плоскость кольца, и мы видим на нижнем фото, как оно повернулось к нам ночной стороной. Вещество в делении Кассини стало вполне заметно с теневой стороны, а яркая часть кольца, напротив, потемнела, поскольку она плотная и непрозрачная. Там, где была чернота, появляется яркость, потому что мелкие частицы не отражают, но рассеивают свет вперед. Эти снимки показывают, что вещество есть везде, просто частицы разного размера и структуры. Какие физические явления сепарируют эти частицы, мы пока не очень понимаем. На верхнем снимке виден Янус − один из спутников Сатурна.

Надо сказать, что хоть и близко от кольца Сатурна пролетали космические аппараты, тем не менее ни одному из них не удалось увидеть реальные частицы, составляющие кольцо. Мы видим лишь общее их распределение. Отдельные глыбы увидеть не удается, не рискуют аппарат внутрь кольца запускать. Но когда-нибудь это придется сделать.

С ночной стороны Сатурна сразу появляются те слабо видимые части колец, которые в прямом свете не видно.

Это не настоящий цветной снимок. Цветами здесь показан характерный размер тех частиц, которые составляют ту или иную область. Красные – мелкие частицы, бирюзовые – более крупные.

В ту эпоху, когда кольцо разворачивалась ребром к Солнцу, тени от крупных неоднородностей ложатся на плоскость кольца (верхнее фото). Самая длинная тень здесь − от спутника Мимас, а многочисленные мелкие пики, которые в увеличенном изображении показаны на врезке, однозначного объяснения пока не получили. За них ответственны выступы километрового размера. Не исключено, что некоторые из них – это тени от наиболее крупных камней. Но квазирегулярная структура теней (фото внизу) более соответствует временным скоплениям частиц, возникающим в результате гравитационной неустойчивости.

Вдоль некоторых колец летают спутники, так называемые «сторожевые псы» или «пастушьи собаки», которые своей гравитацией удерживают от размытия некоторые кольца. Причем сами спутники довольно интересные. Один движется внутри тонкого кольца, другой снаружи (например, Янус и Эпиметей). У них орбитальные периоды чуть-чуть разные. Внутренний ближе к планете и, следовательно, быстрее облетает ее, догоняет наружный спутник и за счет взаимного притяжения меняет свою энергию: наружный притормаживается, внутренний ускоряется, и они меняются орбитами – тот, что затормозил переходит на низкую орбиту, а тот, что ускорился – на высокую. Так они делают несколько тысяч оборотов, а затем вновь меняются местами. Например, Янус и Эпиметей меняются местами раз в 4 года.

Несколько лет назад открыли самое далекое кольцо Сатурна, о котором вообще не подозревали. Это кольцо связано со спутником Феба, с поверхности которого улетает пыль, заполняя область вдоль орбиты спутника. Плоскость вращения этого кольца, как и самого спутника, не связана с экватором планеты, поскольку из-за большого расстояния гравитация Сатурна воспринимается как поле точечного объекта.

У каждой гигантской планеты есть семейство спутников. Особенно богаты ими Юпитер и Сатурн. На сегодняшний день у Юпитера их 69, а у Сатурна 62 и регулярно обнаруживаются новые. Нижняя граница массы и размера для спутников формально не установлена, поэтому для Сатурна это число условное: если вблизи планеты обнаруживается объект размером 20-30 метров, то что это – спутник планеты или частица ее кольца?

В любом многочисленном семействе космических тел мелких всегда больше, чем крупных. Спутники планет – не исключение. Мелкие спутники – это, как правило, глыбы неправильной формы, в основном состоящие изо льда. Имея размер менее 500 км, они не в состоянии своей гравитацией придать себе сфероидальную форму. Внешне они очень похожи на астероиды и ядра комет. Вероятно, многие из них таковыми и являются, поскольку движутся вдали от планеты по весьма хаотическим орбитам. Планета могла захватить их, а через некоторое время может потерять.

С малыми астероидоподобными спутниками мы пока не очень близко знакомы. Детальнее других исследованы такие объекты у Марса − два его небольших спутника, Фобос и Деймос. Особенно пристальное внимание было к Фобосу; на его поверхность даже зонд хотели отправить, но пока не получилось. Чем внимательнее присматриваешься к любому космическому телу, тем больше в нем загадок. Фобос – не исключение. Посмотрите, какие странные структуры идут вдоль его поверхности. Уже несколько физических теорий существует, пытающихся объяснить их образование. Эти линии из мелких провалов и борозд похожи на меридианы. Но физической теории их формирования пока никто не предложил.

Все мелкие спутники несут на себе многочисленные следы ударов. Время от времени они сталкиваются друг с другом и с приходящими издалека телами, дробятся на отдельные части, а могут и объединяться. Поэтому восстановить их далекое прошлое и происхождение будет нелегко. Но среди спутников есть и те, что генетически связаны с планетой, поскольку движутся рядом с ней в плоскости ее экватора и, скорее всего имеют общее с ней происхождение.

Особый интерес представляют крупные планетоподобные спутники. У Юпитера их четыре; это так называемые «галилеевы» спутники – Ио, Европа, Ганимед и Каллисто. У Сатурна выделяется своим размером и массой могучий Титан. Эти спутники по своим внутренним параметрам почти неотличимы от планет. Просто их движение вокруг Солнца контролируется еще более массивными телами – материнскими планетами.

Вот перед нами Земля и Луна, а рядом в масштабе спутник Сатурна Титан. Замечательная маленькая планета с плотной атмосферой, с жидкими большими «морями» из метана, этана и пропана на поверхности. Моря из сжиженного газа, который при температуре поверхности Титана (–180 °C) находятся в жидком виде. Очень привлекательная планета, потому что на ней будет легко и интересно работать – атмосфера плотная, надежно защищает от космических лучей и по составу близка к земной атмосфере, поскольку тоже в основном состоит из азота, хотя и лишена кислорода. Вакуумные скафандры там не нужны, поскольку атмосферное давление почти как на Земле, даже чуть больше. Тепло оделись, баллончик с кислородом за спину, и вы легко будете работать на Титане. Кстати, это единственный (кроме Луны) спутник, на поверхность которого удалось посадить космический аппарат. Это был «Гюйгенс», доставленный туда на борту «Кассини» (NASA, ESA), и посадка была довольно удачной.

Вот единственный снимок, сделанный на поверхности Титана. Температура низкая, поэтому глыбы – это очень холодный водяной лед. Мы в этом уверены, потому что Титан вообще по большей части состоит из водяного льда. Цвет красновато-рыжеватый; он естественный и связан с тем, что в атмосфере Титана под действием солнечного ультрафиолета синтезируется довольно сложные органические вещества под общим названием «толины». Дымка из этих веществ пропускает к поверхности в основном оранжевый и красный цвет, довольно сильно его рассеивая. Поэтому изучать из космоса географию Титана довольно сложно. Помогает радиолокация. В этом смысле ситуация напоминает Венеру. Кстати, и циркуляция атмосферы на Титане тоже венерианского типа: по одному мощному циклону в каждом из полушарий.

Спутники других планет-гигантов тоже оригинальны. Это Ио – ближайший спутник Юпитера. На таком же расстоянии находится, что и Луна от Земли, но Юпитер – гигант, а значит, действует на свой спутник очень сильно. Юпитера расплавило недра спутника и на нем мы видим множество действующих вулканов (черные точки). Видно, что вокруг вулканов выбросы ложатся по баллистическим траекториям. Ведь там практически нет атмосферы, поэтому то, что выброшено из вулкана, летит по параболе (или по эллипсу?). Малая сила тяжести на поверхности Ио создает условия для высоких выбросов: 250-300 км вверх, а то и прямо в космос!

Второй от Юпитера спутник – Европа. Покрыт ледяной корой, как наша Антарктида. Под корой, толщина которой оценивается в 25-30 км, океан жидкой воды. Ледяная поверхность покрыта многочисленными древними трещинами. Но под влиянием подледного океана пласты льда медленно перемещаются, напоминая этим дрейф земных материков.

Трещины во льду время от времени открываются, и оттуда фонтанами вырывается вода. Теперь мы это точно знаем, поскольку видели фонтаны с помощью космического телескопа «Хаббл». Это открывает перспективу исследовать воду Европы. Кое-что о ней мы уже знаем: это соленая вода, хороший проводник электричества, на что указывает магнитное поле. Ее температура, вероятно, близка к комнатной, но о ее биологическом составе мы пока ничего не знаем. Хотелось бы зачерпнуть и проанализировать эту воду. И экспедиции с этой целью уже готовятся.

Другие крупные спутники планет, включая нашу Луну, не менее интересны. По сути, они представляют самостоятельную группу планет-спутников.

Здесь в одном масштабе показаны наиболее крупные спутники в сравнении с Меркурием. Они ничем ему не уступают, а по своей природе некоторые из них даже более интересны.

Почитай:В группу планет гигантов вошли Сатурн, Юпитер, Нептун и Уран. Все перечисленные планеты (в особенности Юпитер) имеют огромные массы и размеры. К примеру, Юпитер по объему превзошел Землю почти в полторы тысячи раз, а по массе – более чем в триста раз.Планета-гигант довольно-таки быстро вращается вокруг своей оси; менее десяти часов потребуется большущему Юпитеру, чтобы совершить 1 оборот. При этом экваториальная зона планеты-гиганта вращается быстрее, чем полярная, то есть именно там, где максимальна линейная скорость точки в ее движении вокруг оси, максимальна и угловая скорость. Итог быстрого вращения – это огромное сжатие планеты-гиганта (заметное при визуальном наблюдении). Разность полярного и экваториального радиусов Земли составила двадцать один километр, а у Юпитера она равняется четырем тысячам четыремстам километров. Планета-гигант находится далеко от Солнца, и в независимости от характера смены времени года на ней всегда господствует низкая температура. На Юпитере нет смены времени года вообще, потому, что ось этой планеты практически перпендикулярна плоскости ее орбиты. Оригинально совершается смена времени года и на планете Уран, поскольку ось данной планеты наклонена к плоскостям орбит под углом восемь градусов.Планета-гигант отличается большим числом спутников; у Юпитера к середине две тысячи первого года обнаружено их уже двадцать восемь, Сатурна — тридцать, Урана – двадцать один и только у Нептуна — восемь. Превосходная особенность планеты-гиганта — кольцо, которое открыто не только у Сатурна, но и у Урана, Нептуна и Юпитера.Важной особенностью построения планеты-гиганта заключается в том, что такая планета не имеет твердой поверхности. Это представление прекрасно согласуется с маленькими средними частотами планет-гигантов. Соответственно, все, что, получается, рассмотреть на Сатурне и Юпитере, случается в протяженных атмосферах этой планеты. На Юпитере в небольшие телескопы заметны даже полосы, которые вытянуты вдоль экватора. В верхнем слое водородно-гелиевой атмосферы Юпитера в виде примеси можно встретить химические соединения (к примеру, аммиак и метан), углеводороды (ацетилен, этан) и разные соединения, содержащие серу и фосфор, способные окрасить детали атмосферы в красно-коричневый и желтый цвета. Так, по химическому составу планета-гигант резко отличается от планеты земной группы.Смотрите также:Общая характеристика планет земной группы
Планетами, которые относятся к земной группе, являются следующие: Венера, Марс, Земля, Меркурий, Плутон – все они имеют небольшие массы и размеры, их средняя плотность в несколько раз превзошла плотность воды; они способны медленно вращаться вокруг личных осей; у них малое количество спутников (у Марса — два, у Земли – всего лишь один…
Планеты-гиганты
На фотографиях, которые были переданы с борта американского АМС «Вояджер» и «Пионер», ясно видно, что в атмосфере Юпитера газ участвует в не простом движении, сопровождаемым распадом и образованием вихрей. Предполагают, что наблюдаемое Большое Красное Пятно на Юпитере около трехсот лет в виде овала с полуосями пятнадцать и пять тысяч километров так же представляет громадный…
Характеристика планет-гигантов
В отличие от планеты земных групп, наделенных мантией, корой и ядром, на Юпитере есть газообразный водород, который входит в состав атмосферы, и может переходить в жидкую, а потом в твердую фазу. Появление этих агрегатных противоестественных состояний водорода связано с острым повышением давления по мере его погружения в глубину…