Равноускоренное движение без начальной скорости график. Равномерное, равноускоренное прямолинейное движение

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Вы сейчас здесь: Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.

    Равноускоренное движение - это движение с постоянным вектором ускорения . Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.

    Зависимость скорости от времени.

    При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.

    Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:

    . (1)

    В нашем случае имеем . Что надо продифференцировать, чтобы получить постоянный вектор ? Разумеется, функцию . Но не только: к ней можно добавить ещё произвольный постоянный вектор (ведь производная постоянного вектора равна нулю). Таким образом,

    . (2)

    Каков смысл константы ? В начальный момент времени скорость равна своему начальному значению: . Поэтому, полагая в формуле (2) , получим:

    Итак, константа - это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:

    . (3)

    В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:

    , (4)

    . (5)

    Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)

    Закон движения.

    Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:

    Подставляем сюда выражение для скорости, даваемое формулой (3) :

    (6)

    Сейчас нам предстоит проинтегрировать равенство (6) . Это несложно. Чтобы получить , надо продифференцировать функцию . Чтобы получить , нужно продифференцировать . Не забудем добавить и произвольную константу :

    Ясно, что - это начальное значение радиус-вектора в момент времени . В результате получаем искомый закон равноускоренного движения:

    . (7)

    Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:

    . (8)

    . (9)

    . (10)

    Формулы (8) - (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.

    Снова вернёмся к закону движения (7) . Заметим, что - перемещение тела. Тогда
    получаем зависимость перемещения от времени:

    Прямолинейное равноускоренное движение.

    Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось . Тогда для решения задач нам достаточно будет трёх формул:

    где - проекция перемещения на ось .

    Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:

    и подставим в формулу для перемещения:

    После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:

    Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.

    Свободное падение.

    Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.

    Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения , направленным вертикально вниз. Почти во всех задачах при расчётах полагают м/с.

    Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.

    Задача . Найти скорость приземления дождевой капли, если высота тучи км.

    Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой

    Имеем: - искомая скорость приземления, . Получаем: , откуда . Вычисляем: м/с. Это 720 км/ч, порядка скорости пули.

    На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!

    Задача . Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через c.

    Здесь , так что . Вычисляем: м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.

    Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью м/с. Через какое время камень упадёт на землю?

    Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

    Имеем: так что , или . Решая квадратное уравнение, получим c.

    Горизонтальный бросок.

    Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.

    Предположим, что тело брошено горизонтально со скоростью с высоты . Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.

    Выберем систему координат так, как показано на рис. 1 .

    Используем формулы:

    В нашем случае . Получаем:

    . (11)

    Время полёта найдём из условия, что в момент падения координата тела обращается в нуль:

    Дальность полёта - это значение координаты в момент времени :

    Уравнение траектории получим, исключая время из уравнений (11) . Выражаем из первого уравнения и подставляем во второе:

    Получили зависимость от , которая является уравнением параболы. Следовательно, тело летит по параболе.

    Бросок под углом к горизонту.

    Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.

    Предположим, что тело брошено с поверхности Земли со скоростью , направленной под углом к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.

    Выберем систему координат так, как показано на рис. 2 .

    Начинаем с уравнений:

    (Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой.

    Задачи по физике - это просто!

    Не забываем , что решать задачи надо всегда в системе СИ!

    А теперь к задачам!

    Элементарные задачи из курса школьной физики по кинематике.

    Решение задач на прямолинейное равноускоренное движение. При решении задачи обязательно делаем чертеж, на котором показываем все вектора, о которых идет речь в задаче. В условии задачи, если не оговорено иное, даются модули величин. В ответе задачи также должен стоять модуль найденной величины.

    Задача 1

    Автомобиль, двигавшийся со скоростью 30 м/с, начал тормозить. Чему будет равна его скорость через 1 минуту, если ускорение при торможении равно 0,3 м/с 2 ?

    Обратите внимание! Проекция вектора ускорения на ось t отрицательна.



    Задача 2

    Санки начинают двигаться с горы с ускорением 2 м/с 2 . Какое расстояние они пройдут за 2 секунды?



    Не забудьте в ответе перейти от проекции к модулю вектора ускорения!

    Задача 3

    Каково ускорение велосипедиста, если его скорость за 5 секунд изменилась от 7 до 2 м/с?

    Из условия задачи видно, что в процессе движения скорость тела уменьшается. Исходя из этого, определяем направление вектора ускорения на чертеже. В результате расчета должно получиться отрицательное значение вектора ускорения.

    Задача 4

    Санки начинают двигаться с горы из состояния покоя с ускорением 0,1 м/с 2 . Какую скорость будут они иметь через 5 секунд после начала движения?

    Задача 5

    Поезд, двигавшийся с ускорением 0,4 м/с 2 , через 20 секунд торможения остановился. Чему равен тормозной путь, если начальная скорость поезда 20 м/с?

    Внимание! В задаче поезд тормозит, не забудьте о минусе при подстановке числового значения проекции вектора ускорения.



    Задача 6

    Автобус, отходя от остановки, движется с ускорением 0,2 м/с 2 . На каком расстоянии от начала движения его скорость станет равной 10 м/с?


    Задачу можно решить в 2 действия.
    Это решение аналогично решению системы из двух уравнений с двумя неизвестными. Как в алгебре: два уравнения - формулы для V x и S x , два неизвестных - t и S x .

    Задача 7

    Какую скорость разовьет катер, пройдя из состояния покоя 200 метров с ускорением 2 м/с 2 ?

    Не забудьте, что не всегда все данные в задаче задаются числами!
    Здесь надо обратить внимание на слова "из состояния покоя" - это соответствует начальной скорости, равной 0.

    При извлечении корня квадратного: время может быть только больше 0!

    Задача 8

    При аварийном торможении мотоцикл, двигавшийся со скоростью 15 м/с, оставовился через 5 секунд. Найти тормозной путь.

    Продолжение смотри

    График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt . Применяя эту формулу к промежутку от t о = 0 до некоторого момента t , можно написать выражение для скорости:

    V(t)=V 0 + at. (1.5)

    Здесь V 0 – значение скорости при t о = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

    При равнозамедленном движении аналогично получаем

    V(t) = V 0 – at.

    Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

    Рассмотрим малый промежуток времени Δt . Из определения средней скорости V cp = ΔS/Δt можно найти пройденный путь ΔS = V cp Δt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой V cp . Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt . Это соотношение тем точнее, чем меньше Δt . Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

    S= ½·(V 0 + V)t ,

    подставляя (1.5), получим для равноускоренного движения:

    S = V 0 t + (at 2 /2) (1.6)

    Для равнозамедленного движения перемещение L вычисляется так:

    L= V 0 t–(at 2 /2).

    Разберем задачу 1.3.

    Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

    Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

    – Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.


    Разделим все время движения на три промежутка ОВ , BD , DE . Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

    Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:

    S 1 (t) = at 2 /2.

    Ускорение можно найти, разделив изменение скорости, т.е. длину АВ , на промежуток времени ОВ .

    Студент: – На участке ВD тело движется равномерно со скоростью V 0 , приобретенной к концу участка ОВ . Формула пути – S = Vt . Ускорения нет.

    S 2 (t) = at 1 2 /2 + V 0 (t– t 1).

    Учитывая это пояснение, напишите формулу для пути на участке DE .

    Студент: – На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t 2 тело уже прошло расстояние S 2 = at 1 2 /2 + V(t 2 – t 1).

    К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t 2 получаем пройденный путь, за время t – t 2:

    S 3 =V 0 (t–t 2)–/2.

    Предвижу вопрос о том, как найти ускорение a 1 . Оно равно СD/DE . В итоге получаем путь, пройденный за время t>t 2

    S (t)= at 1 2 /2+V 0 (t–t 1)– /2.

    Студент: – На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

    – Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t 1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tg α, а если подходить к точке справа, то скорость равна tg β. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.

    Есть еще одно полезное соотношение между S , a, V и V 0 . Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

    Студент: V(t) = V 0 + at , значит,

    t = (V– V 0)/a,

    S = V 0 t + at 2 /2 = V 0 (V– V 0)/a + a[(V– V 0)/a] 2 = .

    Окончательно имеем:

    S = . (1.6а)

    История .

    Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

    – Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.