Как определить периодичность функции. Периодические функции Правила нахождения периода у периодических функций

Повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

Говоря более формально, функция называется периодической с периодом T ≠ 0 {\displaystyle T\neq 0} , если для каждой точки x {\displaystyle x} из её области определения точки x + T {\displaystyle x+T} и x − T {\displaystyle x-T} также принадлежат её области определения, и для них выполняется равенство f (x) = f (x + T) = f (x − T) {\displaystyle f(x)=f(x+T)=f(x-T)} .

Исходя из определения, для периодической функции справедливо также равенство f (x) = f (x + n T) {\displaystyle f(x)=f(x+nT)} , где n {\displaystyle n} - любое целое число.

Однако если у множества периодов { T , T > 0 , T ∈ R } {\displaystyle \{T,T>0,T\in \mathbb {R} \}} имеется наименьшее значение, то оно называется основным (или главным) периодом функции.

Примеры

Sin ⁡ (x + 2 π) = sin ⁡ x , cos ⁡ (x + 2 π) = cos ⁡ x , ∀ x ∈ R . {\displaystyle \sin(x+2\pi)=\sin x,\;\cos(x+2\pi)=\cos x,\quad \forall x\in \mathbb {R} .}

  • Функция Дирихле является периодической, её периодом является любое ненулевое рациональное число. Основного периода она также не имеет.

Некоторые особенности периодических функций

и T 2 {\displaystyle T_{2}} (однако просто периодом это число будет являться). Например, у функции f (x) = sin ⁡ (2 x) − sin ⁡ (3 x) {\displaystyle f(x)=\sin(2x)-\sin(3x)} основной период равен 2 π {\displaystyle 2\pi } , у функции g (x) = sin ⁡ (3 x) {\displaystyle g(x)=\sin(3x)} период равен 2 π / 3 {\displaystyle 2\pi /3} , а у их суммы f (x) + g (x) = sin ⁡ (2 x) {\displaystyle f(x)+g(x)=\sin(2x)} основной период, очевидно, равен π {\displaystyle \pi } .
  • Сумма двух функций с несоизмеримыми периодами не всегда является непериодической функцией.

Особенности построения графика периодических функций

График периодической функции обычно сначала строят на промежутке [x 0 ; x 0 + T ). Выполняют параллельный перенос точек графика на всю об­ласть определения.

Примеры периодических функций и их графиков.

Примерами периодических функции могут служить тригонометрические функ­ции. Рассмотрим основные из них.

Функция F(x) =sin(x)

а) Область определения: D (sin x) = R .

б) Множество значений: E (sin x) = [– 1 , 1] .
в) Четность, нечетность: функция нечетная.

г) Периодичность: функция периодическая с основным периодом .

д) Нули функции: sin x = 0 при , n Z .

е) Промежутки знакопостоянства функции:

ж) Промежутки монотонности: функция возрастает при ;

функция убывает при ,

з) Экстремумы функции:
; .

График функции y= sin x изображен на рисунке.

Функция F(x) = cos(x)

а) Область определения .

б) Множество значений: E (cos x ) = [ – 1 , 1 ] .

в) Четность, нечетность: функция четная.

г) Периодичность: функция периодическая с основным периодом .

д)Нули функции: при .

е)Промежутки знакопостояннства:

ж) Промежутки монотонности:

функция возрастает при ;

функция убывает при

з) Экстремумы:

График функции y = cosx изображен на рисунке.

Функция F(x) = tg(x)

а) Область определения:

б) Множество значений: E ()

в) Четность, нечетность. Функция нечетная.

г) Периодичность. Функция периодическая с основным периодом

д) Нули функции.: tg x = 0 при x = n, n Z .

е) Промежутки знакопостоянства:

ж) Промежутки монотонности: функция возрастает на каждом интервале, целиком принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = tg x изображен на рисунке.

Функция F(x) = ctg(x)

а) Область определения: D (ctg x) = R \ { n(n Z) } .

б) Множество значений: E (ctg x) = R .
в) Четность, нечетность функция нечетная.

г) Периодичность: функция периодическая с основным периодом T = .

д) Нули функции: ctg x = 0 при x = /2 + n, n Z .

е) Промежутки знакопостоянства;

ж) Промежутки монотонности: функция убывает на каждом интервале, це­ликом принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = ctg x изображен на рисунке.

Интересные графики получаются с применением суперпозиции-образования сложных функций на основе тригонометрических периодических функций.

График периодической функции

II. Приложения периодических функций. Периодические колебания.

Колебания.

Колебаниями называют процессы, отличающиеся той или иной степенью повторяемости. Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел. При электрических – напряжение и сила тока. В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

Повторяющиеся процессы непрерывно происходят внутри любого живого организма, например: сокращения сердца, работа легких; мы дрожим, когда нам холодно; мы слышим и разговариваем благодаря колебаниям барабанных перепонок и голосовых связок; при ходьбе наши ноги совершают колебательные движения. Колеблются атомы, из которых мы состоим. Мир, в котором мы живем, склонен к колебаниям.

Периодические колебания.

Периодическими называют такие колебания, при которых все характеристики движения повторяются через определенный промежуток времени.

Для периодических колебаний используют следующие характеристики:

период колебаний Т, равный времени, в течение которого совершается одно полное колебание;

частота колебаний ν, равная числу колебаний, совершаемых за одну секунду (ν = 1/Т);

Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими. Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса. Они называются гармоническими. Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция, гармонических колебаний.

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

Изучая явления природы, решая технические задачи, мы сталкиваемся с периодическими процессами, которые можно описать функциями особого вида.

Функция y = f(x) с областью определения D называется периодической, если существует хотя бы одно число T > 0, такое, при котором выполняются следующие два условия:

1) точки x + T, x − T принадлежат области определения D для любого x ∈ D;

2) для каждого x из D имеет место соотношение

f(x) = f(x + T) = f(x − T).

Число T называется периодом функции f(x). Иными словами, периодической функцией является такая функция, значения которой повторяются через некоторый промежуток. Например, функция y = sin x - периодическая (рис. 1) с периодом 2π.

Заметим, что если число T является периодом функции f(x), то и число 2T также будет ее периодом, как и 3T, и 4T и т. д., т. е. у периодической функции бесконечно много разных периодов. Если среди них имеется наименьший (не равный нулю), то все остальные периоды функции являются кратными этого числа. Заметим, что не каждая периодическая функция имеет такой наименьший положительный период; например, функция f(x)=1 такого периода не имеет. Важно также иметь в виду, что, например, сумма двух периодических функций, имеющих один и тот же наименьший положительный период T 0 , не обязательно имеет тот же самый положительный период. Так, сумма функций f(x) = sin x и g(x) = −sin x вообще не имеет наименьшего положительного периода, а сумма функций f(x) = sin x + sin 2x и g(x) = −sin x, наименьшие периоды которых равны 2π, имеет наименьший положительный период, равный π.

Если отношение периодов двух функций f(x) и g(x) является рациональным числом, то сумма и произведение этих функций также будут периодическими функциями. Если же отношение периодов всюду определенных и непрерывных функций f и g будет иррациональным числом, то функции f+g и fg уже будут непериодическими функциями. Так, например, функции cos x sin √2 x и cosj √2 x + sin x являются непериодическими, хотя функции sin x и cos x периодичны с периодом 2π, функции sin √2 x и cos √2 x периодичны с периодом √2 π.

Отметим, что если f(x) - периодическая функция с периодом T, то сложная функция (если, конечно, она имеет смысл) F(f(x)) является также периодической функцией, причем число T будет служить её периодом. Например, функции y = sin 2 x, y = √(cos x) (рис. 2,3) - периодические функции (здесь: F 1 (z) = z 2 и F 2 (z) = √z). Не следует, однако, думать, что если функция f(x) имеет наименьший положительный период T 0 , то и функция F(f(x)) будет иметь такой же наименьший положительный период; например, функция y = sin 2 x имеет наименьший положительный период, в 2 раза меньший, чем функция f(x) = sin x (рис. 2).

Нетрудно показать, что если функция f периодична с периодом T, определена и дифференцируема в каждой точке действительной прямой, то функция f"(x) (производная) есть также периодическая функция с периодом T, однако первообразная функция F(x) (см. Интегральное исчисление) для f(x) будет периодической функцией только в том случае, когда

F(T) − F(0) = T o ∫ f(x) dx = 0.

ГАРМОНИЧЕСКИЙ АНАЛИЗ

Введение .

Современное развитие техники предъявляет повышенные требования к математической подготовке инженеров. В результате постановки и исследования ряда конкретных проблем механики и физики возникла теория тригонометрических рядов. Важнейшую роль ряды Фурье играют во всех областях техники, опирающихся на теорию колебаний и теорию спектрального анализа. Например, в системах передачи данных для описания сигналов практическое применение спектральных представлений неизменно приводит к необходимости экспериментального осуществления разложения Фурье. Особенно велика роль тригонометрических рядов в электротехнике при изучении периодических несинусоидальных токов: амплитудный спектр функции находится с помощью ряда Фурье в комплексной форме. Для представления непериодических процессов применяется интеграл Фурье.

Тригонометрические ряды находят важное применение в многочисленных разделах математики и доставляют особенно удобные методы для решения трудных задач математической физики, например, задачи о колебании струны и задачи о распространении тепла в стержне.

Периодические функции.

Многие задачи науки и техники связаны с периодическими функциями, отражающими циклические процессы.

Определение 1. Периодическими называются явления, повторяющиеся в одной и той же последовательности и в одном и том же виде через определенные интервалы аргумента.

Пример. В спектральном анализе – спектры.

Определение 2. Функция у = f (x ) называется периодической с периодом Т , если f (x + Т ) = f (x ) при всех х и x + Т из области определения функции.

На рисунке период изображенной функции Т = 2.

Определение 3. Наименьший положительный период функции называется основным периодом.

Там, где приходится иметь дело с периодическими явлениями, почти всегда встречаются тригонометрические функции.

Период функций равен , период функций равен .

Период тригонометрических функций с аргументом (ах ) находится по формуле:

.

Пример. Найти основной период функций 1) .

Решение . 1) . 2) .

Лемма. Если f (x ) имеет период Т , то интеграл этой функции, взятый в пределах, отличающихся на Т , не зависит от выбора нижнего предела интегрирования, т.е. = .

Основной период сложной периодической функции у = f (x ) (состоящей из суммы периодических функций) – это наименьшее общее кратное периодов составляющих функций.

То есть, если f (x ) = f 1 (x ) + f 2 (x ), Т 1 – период функции f 1 (x ), Т 2 – период функции f 2 (x ), то наименьший положительный период Т должен удовлетворять условию:

T = nT 1 + kT 2 , где (*) –