Как в космосе добывают питьевую воду. Регенерация воды на мкс

Возможно, один из самых старых и распространенных мифов о космосе звучит так: в безвоздушном пространстве космоса любой человек взорвется без специального скафандра. Логика в том, что поскольку там нет никакого давления, мы бы раздулись и лопнули, как воздушный шарик, который надули слишком сильно. Возможно, вас удивит, но люди куда более прочные, чем воздушные шарики. Мы не лопаемся, когда нам делают укол, не лопнем и в космосе - наши тела не по зубам вакууму. Раздуемся немного, это факт. Но наши кости, кожа и другие органы достаточно устойчивы, чтобы пережить это, если кто-то не будет активно их разрывать. На самом деле, некоторые люди уже переживали условия чрезвычайно низкого давления, работая в ходе космических миссий. В 1966 году один человек тестировал скафандр и внезапно подвергся декомпрессии на 36 500 метров. Он потерял сознание, но не взорвался. Даже выжил и полностью восстановился.

Люди замерзают


Это заблуждение часто используется . Кто из вас не видел, как кто-то оказывается за бортом космического корабля без костюма? Он быстро замерзает, и если его не вернуть обратно, превращается в сосульку и уплывает прочь. В реальности происходит прямо противоположное. Вы не замерзнете, если попадете в космос, вы, наоборот, перегреетесь. Вода над источником тепла будет нагреваться, подниматься, остывать и опять по новой. Но в космосе нет ничего, что могло бы принять тепло воды, а значит остывание до температуры замерзания невозможно. Ваше тело будет работать, производя тепло. Правда, к тому времени, когда вам станет нестерпимо жарко, вы уже будете мертвы.

Кровь кипит


Этот миф не имеет ничего общего с тем, что ваше тело перегреется, если вы окажетесь в безвоздушном пространстве. Вместо этого он напрямую связан с тем, что любая жидкость имеет прямую связь с давлением окружающей среды. Чем выше давление, тем выше точка кипения, и наоборот. Потому что жидкости легче перейти в форму газа. Люди с логикой могут догадаться, что в космосе, где нет давления вообще, жидкость будет кипеть, а кровь - тоже жидкость. Линия Армстронга проходит там, где атмосферное давление настолько низкое, что жидкость будет кипеть при комнатной температуре. Проблема в том, что если жидкость будет кипеть в космосе, кровь - нет. Кипеть будут другие жидкости вроде слюны во рту. Тот человек, которого декомпрессировало на 36 500 метрах, говорил, что слюна «сварила» его язык. Кипение такое будет больше похоже на высушивание феном. Однако кровь, в отличие от слюны, находится в закрытой системе, и ваши вены будут удерживать ее под давлением в жидком состоянии. Даже если вы будете в полном вакууме, тот факт, что кровь замкнута в системе, означает, что она не превратится в газ и не улетучится восвояси.


Солнце - это то, с чего начинается изучение космоса. Это большой огненный шар, вокруг которого обращаются все планеты, который находится достаточно далеко, но греет нас и при этом не сжигает. Учитывая то, что мы не могли бы существовать без солнечного света и тепла, можно считать удивительным большое заблуждение о Солнце: что оно горит. Если вы когда-нибудь обжигали себя пламенем, поздравляем, на вас попало больше огня, чем могло дать вам Солнце. В реальности Солнце - это большой шар газа, который испускает свет и тепловую энергию в процессе ядерного синтеза, когда два атома водорода образуют атом гелия. Солнце дает свет и тепло, но обычного огня не дает вообще. Это просто большой и теплый свет.

Черные дыры - это воронки


Есть еще одно распространенное заблуждение, которое можно списать на изображение черных дыр в кино и мультфильмах. Разумеется, «невидимы» по своей сути, но для аудитории вроде нас с вами их рисуют похожими на зловещие водовороты судьбы. Их изображают двухмерными воронками с выходом только на одной стороне. В реальности черная дыра - это сфера. У нее нет одной стороны, которая засосет вас, скорее она похожа на планету с гигантской гравитацией. Если вы подойдете к ней слишком близко с любой стороны, вот тогда вас поглотит.

Повторный вход в атмосферу


Все мы видели, как космические корабли совершают повторный вход в атмосферу Земли (так называемый re-entering). Это серьезное испытание для судна; как правило, его поверхность сильно разогревается. Многие из нас думают, что это из-за трения между кораблем и атмосферой, и в этом объяснении есть смысл: как бы корабль был окружен ничем, и вдруг начинает тереться об атмосферу с гигантской скоростью. Разумеется, все будет раскаляться. Что ж, правда в том, что трению отводится менее процента тепла во время повторного входа. Основная причина нагрева - компрессия, или сжатие. Когда корабль несется обратно к Земле, воздух, через который он проходит, сжимается и окружает корабль. Это называется головной ударной волной. Воздух, который сталкивается с головой корабля, толкает его. Скорость происходящего приводит к тому, что воздух нагревается, не имея времени на декомпрессию или охлаждение. Хотя часть тепла абсорбируется тепловым щитом, красивые картинки повторного входа в атмосферу создает именно воздух вокруг аппарата.

Хвосты комет


Представьте на секунду комету. Скорее всего, вы представите кусок льда, несущийся сквозь космическое пространство с хвостом из света или огня позади. Возможно, для вас будет сюрпризом, что направление хвоста кометы не имеет ничего общего с направлением, в котором движется комета. Дело в том, что хвост кометы не является результатом трения или разрушения тела. Солнечный ветер нагревает комету и приводит к таянию льда, поэтому частицы льда и песка летят в противоположном ветру направлении. Поэтому хвост кометы не обязательно будет тянуться за ней шлейфом, однако всегда будет направлен в сторону от солнца.


После понижения Плутона по службе, Меркурий стал самой маленькой планетой. Также это ближайшая к Солнцу планета, поэтому вполне естественно было бы предположить, что это самая горячая планета нашей системы. Короче, Меркурий - чертовски холодная планета. Во-первых, в самой горячей точке Меркурия температура составляет 427 градусов по Цельсию. Даже если бы на всей планете сохранялась такая температура, все равно Меркурий был бы холоднее Венеры (460 градусов). Причина того, что Венера, которая почти на 50 миллионов километров дальше от Солнца, чем Меркурий, теплее, кроется в атмосфере из углекислого газа. Меркурий похвастать не может ничем.

Другая причина связана с его орбитой и вращением. Полный оборот вокруг Солнца Меркурий совершает за 88 земных дней, а полный оборот вокруг своей оси - на 58 земных дней. Ночь на планете длится 58 дней, что дает достаточно времени, чтобы температура упала до -173 градусов по Цельсию.

Зонды


Все знают, что марсоход «Кьюриосити» в данный момент занимается важной исследовательской работой на Марсе. Но люди забыли о многих других зондах, которые мы рассылали на протяжении многих лет. Марсоход «Оппортьюнити» приземлился на Марсе в 2003 году с целью провести миссию в течение 90 дней. Спустя 10 лет он все еще работает. Многие люди думают, что мы никогда не отправляли зонды на планеты кроме Марса. Да, мы отправили множество спутников на орбиту, но посадить что-то на другую планету? Между 1970 и 1984 годами СССР успешно посадил восемь зондов на поверхности Венеры. Правда, все они сгорели, благодаря недружелюбной атмосфере планеты. Самый стойкий венероход прожил около двух часов, гораздо дольше, чем ожидалось.

Если мы отправимся чуть дальше в космос, мы достигнем Юпитера. Для роверов Юпитер - это еще более сложная цель, чем Марс или Венера, поскольку состоит почти целиком из газа, на котором ездить нельзя. Но это не остановило ученых и они отправили туда зонд. В 1989 году космический аппарат «Галилео» отправился изучать Юпитер и его спутники, чем и прозанимался следующие 14 лет. Он также сбросил зонд на Юпитер, а тот отправил информацию о составе планеты. Хотя на пути к Юпитеру находится и другой корабль, та, самая первая информация, имеет неоценимое значение, поскольку на тот момент зонд «Галилео» был единственным зондом, погрузившимся в атмосферу Юпитера.

Состояние невесомости

Этот миф кажется настолько очевидным, что многие люди никак не хотят переубеждать себя. Спутники, космические аппараты, астронавты и другое не испытывают невесомости. Настоящая невесомость, или микрогравитация, не существует и никто ее не испытывал никогда. Большинство людей находятся под впечатлением: как же так, астронавты и корабли плавают, поскольку находятся далеко от Земли и не испытывают действие ее гравитационного притяжения. На самом деле именно гравитация позволяет им плавать. Во время облета Земли или любого другого небесного тела, обладающего значительной гравитацией, объект падает. Но поскольку Земля постоянно движется, эти объекты не врезаются в нее.

Гравитация Земли пытается затащить корабль на свою поверхность, но движение продолжается, поэтому объект продолжает падать. Это вечное падение и приводит к иллюзии невесомости. Астронавты внутри корабля тоже падают, но кажется, будто они плавают. Такое же состояние можно испытать в падающем лифте или самолете. И вы можете испытать в самолете, свободно падающем на высоте 9000 метров.

Что случится с водой в космосе? January 2nd, 2017

Казалось бы не сложный вопрос: что произойдет с жидкой водой комнатной температуры при атмосферном давлении, если ее вылить в открытый космос?

Космос — очень, очень холодное место. На сильном холоде, как подсказывает нам жизненный опыт, вода превращается в лед — кристаллизуется.Но космос — это еще и самый близкий к идеальному вакуум, до которого можно дотянуться. Одна атмосфера эквивалентна давлению 6 x 1022 атомов водорода на квадратный метр. В лучших вакуумных камерах на Земле ученые создают давление в миллиарды раз меньшее, но в межзвездном пространстве оно опускается в миллионы и миллиарды раз ниже земных технических рекордов.А при пониженном давлении вода переходит в газообразное состояние — кипит.

Так что же произойдет, если жидкоая вода окажется одновременно при очень низком давлении и очень низкой температуре — замерзнет или мгновенно вскипит, превратившись в газ?

Ответ — в теплоемкости воды.

Космос холоден, но даже в межгалактическом пространстве вода очень неплохо сохраняет то тепло, которое ей когда-то сообщили. Резко охладить ее до температуры, близкой к абсолютному нолю, невозможно — слишком велика разница между комнатной (293 К) и средней по космосу. К тому же в момент, когда вода окажется в безвоздушном холодном мраке, силы поверхностного натяжения сформируют водяные сферы, и площадь охлаждения станет минимальной.


Таким образом процесс охлаждения будет идти невероятно медленно — по крайней мере до тех пор, пока каждая молекула не окажется сама по себе, вдалеке от других уголков H2O.

А что помешает молекулам воды кинуться врассыпную? Ведь давление станет пренебрежимо мало, и переход в газообразное состояние может произойти совершенно мгновенно! Когда же молекулы или группы молекул воды окажутся относительно далеко друг от друга в облаке газа, они мгновенно растеряют кинетическую энергию, и их температура резко упадет. В каком агрегатном состоянии вода окажется тогда? Чтобы ответить, взглянем на фазовую диаграмму воды. Из нее видно, что если температура падает до -50°C, то никакое низкое давление уже неспособно сделать ее жидкой или газообразной.

Итак, последовательность событий такова: попадая в открытый космос, вода сначала мгновенно становится газообразной, а затем замерзает в виде крошечных льдинок, заполняющих межзвездную пустоту.

Можно ли увидеть это в реальной жизни? Оказалось что да. По словам астронавтов МКС они много раз наблюдали этот эффект, когда выпускали в открытый космос… мочу из космического корабля!

Когда астронавты, сходив «по маленькому», освобождают космическую станцию от лишнего балласта и отправляют свою мочу в открытый космос, по их словам, она очень бурно кипит. А затем пар почти мгновенно переходит в фазу твердого состояния, и в конечном итоге в космосе получаются такие небольшие облака очень мелких кристаллов замороженной мочи…

А вот еще интересный аспект поведения воды в невесомости.

Кипение в условиях низкой гравитации - забавнейшее зрелище. Но оно имеет значение не только как развлечение, а может преподнести ученым кое-какие открытия в области физики. Еще несколько десятков лет назад никто не знал, что представляет собой процесс кипения в космосе. Конечно, физики ломали голову, анализируя сложный характер кипения здесь, на Земле. Про космос же только предполагали, что зрелище будет еще более захватывающее. А ведь это важный вопрос, потому что кипение происходит не только в чайнике, но и в электрогенераторах и в системах охлаждения космического корабля. Поэтому инженерам необходимо знать, как происходит этот процесс.

Вообще-то на орбите кипение представляет собой более простой процесс, чем на Земле. Невесомость аннулирует две переменных, воздействующих на кипение - конвекцию и плавучесть. Именно поэтому кипяток ведет себя в космосе по-другому. Нагретая жидкость не поднимается, а остается рядом с нагревающей поверхностью и нагревается дальше. Те области жидкости, которые находятся на некотором расстоянии от источника тепла, остаются относительно холодными. Поскольку нагревается меньший объем воды, процесс происходит быстрее. По мере формирования пузырьков пара, они не поднимаются на поверхность, а объединяются в гигантский пузырь, который колеблется в жидкости.

источники

Астрономы обнаружили, что кометы являются типичными разносчиками воды в звездных системах - считается, что именно таким образом Земля обзавелась собственными океанами. Статья исследователей появилась в журнале Science, а ее краткое изложение приводится в пресс-релизе на сайте Европейского космического агентства.

Объектом исследования выступала звездная система TW Гидры - оранжевого карлика, расположенного на расстоянии 176 световых лет от Земли. Звезда окружена протопланетным диском радиусом примерно 200 астрономических единиц (1 астрономическая единица равна расстоянию от Земли до Солнца), возраст которого всего около 10 миллионов лет. Для сравнения, возраст Солнечной системы составляет примерно 4,5 миллиарда лет.

В рамках работы ученые анализировали данные о диске, собранные космическим телескопом "Гершель" Европейского космического агентства. Им удалось обнаружить следы воды в холодной части диска - там, где образуются кометы. При этом вода скорее всего присутствует там в виде льда, покрывающего частицы пыли. По утверждению исследователей, новые результаты наглядно демонстрируют, что состоящие из льда кометы могут быть обычным делом для планетарных систем.

  • Астрономы отыскали гигантские запасы воды в окрестностях черной дыры

    Квазар APM 08279+5255, расположенный на расстоянии в 12 миллиардов световых лет от Земли, является самым мощным источником энергии во Всленной. Он излучает в 65 тысяч раз сильнее, чем вся наша Галактика. Огромная светимость возникает за счет поглощения материи сверхмассивной черной дырой, масса которой примерно в 20 миллиардов раз большей массы Солнца.

    Поскольку расстояние до квазара очень велико, сейчас мы наблюдаем его таким, каким он был на ранних стадиях эволюции Вселенной, когда ее возраст составлял около 1,6 миллиарда лет. Астрономы полагали, что вода могла существовать даже в ту эпоху, однако до сих пор ее обнаружить не удавалось.

  • В протопланетном диске обнаружены огромные запасы воды

    Космический телескоп «Гершель» обнаружил огромные запасы льда при наблюдениях молодого светила TW Гидры, возраст которого составляет около 10 млн лет.

    TW Гидры, почти в два раза уступающая Солнцу по массе и удалённая от Земли на 53,7 ± 6,2 пк, классифицируется как звезда типа T Тельца - переменная звезда, которая ещё не вышла на главную последовательность. Её крупный протопланетный диск имеет радиус в 196 а. е., причём на долю пыли в нём приходится (2–6) 10 –4 солнечной массы. Запасы газа в диске оцениваются в 4 10 –5 –6 10 –2 солнечной массы.

    Принято считать, что водяной пар собирается в «тёплой» части протопланетных дисков, где температура превышает 250 К, а лёд сублимируется. «Тёплую» воду астрономы уже обнаруживали при изучении молодых светил AS 205N и RNO 90 и некоторых аналогов TW Гидры, также относящихся к звёздам типа T Тельца. В «холодных» (~20 К) внешних областях дисков господствующее положение занимает, естественно, лёд, а не пар, но (меж)звёздное ультрафиолетовое излучение всё же возвращает небольшую часть молекул воды в газовую фазу.

  • На всех планетах Солнечной системы обнаружена вода

    Вода, как известно, является основой жизни и ранее предполагалось, что она есть только на Земле. В свете исследований последних лет астрономы опубликовали список планет, на которых есть вода.

    Оказалось, что в том или ином виде эта живительная влага присутствует на всех планетах Солнечной системы. Только недавно с помощью космического зонда "Феникс" было выявлено, что вода есть на Марсе. С Марсом учёные связывают свои основные надежды на возможное существование жизни, также он является наиболее вероятным объектом для первого пилотируемого перелёта на другую планету.

    Даже на удалённых планетах вода присутствует в замерзшем виде и в довольно больших количествах. Нептун и Уран покрыты огромным количеством льда.

  • Ученые обнаружили возле звезды TW Гидры огромные запасы воды

    Амстердам. 21 октября. INTERFAX.RU - Международная группа исследователей под руководством нидерландского астронома Михила Хохерхейде обнаружила в протопланетном диске вокруг звезды TW Гидры большое количество льда, сообщает в пятницу нидерландская газета Volkskrant.

    Из протопланетного диска в перспективе образуются планета. По расчетам ученых, диск содержит около 9 млрд тонн воды.

    "Мы считаем, что другие протопланетные диски там содержат такие же объемы льда", - сообщил Хохерхейде. Таким объемом воды можно наполнить несколько океанов, отметил он.

    Открытие сделано с помощью орбитального телескопа Herschel во время исследования созвездия Гидра, которое находится на расстояние 175 световых лет от Земли.

  • В эпоху Ноя на Марсе была вода

    Космические исследования, Геология, Александр Сергеев

    На этой трехмерной перспективной проекции участка марсианской поверхности голубым цветом отмечены участки, где прибор OMEGA обнаружил древние гидратированные минералы. Видно, что они встречаются как в сухом русле, так и на возвышенностях (иллюстрация с сайта www.esa.int)

    Европейский зонд «Марс Экспресс» получил новые доказательства того, что в прошлом на Марсе была широко распространена вода. На основе этих данных планетологи уточняют представления о геологической и климатической эволюции Марса.

    Новые результаты получены из обработки наблюдений французского прибора OMEGA (Observatoire pour la Minéralogie, l"Eau, les Glaces et l"Activité), которые измеряют спектры поверхности Марса в видимом и ближнем инфракрасном диапазонах. Инструмент выявил на поверхности Марса области, содержащие филлосиликаты (водосодержащие минералы) и гидратированные сульфаты.

  • Лунным телескопам может помешать вода, считают ученые

    Присутствие воды, недавно обнаруженное на Луне, могут помешать работе астрономов, которые ранее рассматривали поверхность естественного спутника Земли как идеальное место для установки телескопов, выяснили ученые из китайского Центра космической науки и прикладных исследований.

    В сентябре 2009 года группа американских ученых, анализируя данные, собранные индийским зондом "Чандраян", показала, что поверхность Луны поглощает излучение в части инфракрасного диапазона спектра, соответствующее воде или гидроксильным группам (ОН). Позже эти данные были подтверждены наблюдениями с зонда LRO.

  • Ученым удалось выяснить, что содержание воды в нашей Галактике гораздо выше, чем считалось ранее.

    Новые измерения показали, что вода занимает третье место среди самых распространенных молекул во вселенной, что в свою очередь дало возможность астрономам произвести расчет содержания элементов в ранее недосягаемых и областях образования новых планетарных систем.

    В холодных частях нашей Галактики содержание воды в космосе, было впервые измерено при помощи Инфракрасной Космической Обсерватории, испанскими и итальянскими астрономами. Особо примечателен тот факт, что именно в этих областях образуются звезды по типу схожие с Солнцем, а некоторые из них образуют настоящие системы с несколькими планетами. Средняя температура этих областей лишь на десять градусов выше абсолютного нуля (263 градуса по Цельсию). Такие области называют холодными облаками, потому как в них не массивных звезд, а стало быть, и нет мощного источника тепла. В галактике насчитывается более миллиона подобных облаков.

    Также ученым удалось определить, какое количество воды находится в виде газа, а какое в виде льда. Эта информация крайне важна для изучения процесса формирования планетарных систем, потому как лёд и пары воды встречаются в газовых планетах, в атмосферах планет и

    В температурных условиях холодных облаков, пары воды обнаружить крайне трудно, т.к. они практически не испускают излучения и не могут быть обнаружены нынешним поколением телескопов. Вдобавок к этому вода в космосе не может существовать в жидкой форме из-за низкой температуры и высокого давления. Поэтому до сих пор в космосе можно было обнаружить только лед. Однако астрономам известно, что пары воды также имеются и в холодных облаках, хоть и в сравнительно небольшом количестве. Для того чтобы грамотно оценить содержание воды в таких местах, необходимо измерить и содержание воды в виде пара.

    Для измерения количества паров воды в холодных облаках, ученые решили применить следующую стратегию. Если брать во внимание тот факт, что свет, проходящий через пары воды должен оставить своеобразный «отпечаток» на всем световом потоке, а точнее спектры излучения приносят с собой полосы поглощения. Именно так ученым и удалось обнаружить пары в воды в этих облаках, а заодно и точное содержание воды.

    Как оказалось, в холодных облаках воды практически столько же, сколько и в местах активного образования звезд. Самым главным из всей этой информации является то, что после окиси углерода и молекулярного водорода, вода является самой распространенной молекулой. К примеру содержание воды в одном из холодных облаков, массой в тысячу Солнц, количество воды в виде пара и льда соответствует тысяче масс юпитера.

    Также ученые определили, что вода в космосе существует преимущественно в виде льда (99 процентов) осевшем в виде конденсата на холодных пылинках, оставшийся процент приходится на газ. Благодаря этим результатам можно окончательно выяснить роль воды в образовании планет.

    Для астронавтов, вода в космосе , впрочем, как и на Земле, является важнейшим ресурсом.

    Все мы хорошо знаем, что без воды человек может прожить совсем не долго.

    Так например:

    • При температуре 16°С / 23°С, не более десяти дней;
    • При 26°С, максимум девять дней;
    • При 29°С, до семи дней;
    • При 36°С, до трех дней.

    Но вернемся к нашим астронавтам.

    Норма воды на одного космонавта

    Если с едой на орбите в общем ситуация понятна – ученые изобретают все новые и новые концентраты, которые при относительно малых объемах и малом весе обладают высокой калорийностью, то с водой ситуация сложней. Вода тяжелая , ее не ужать и не высушить, поэтому на нее уходит относительно много «полезной нагрузки» корабля, а это весьма важный фактор для космических путешествий.

    По «российским космическим нормам» на одного космонавта в сутки требуется ориентировочно по 500/600 грамм еды (что составляет ~ 2500/2700 килокалорий) и 2,2 литра воды. Мы видим, что суточная норма воды гораздо тяжелее и больше в объеме чем порция еды. У американцев нормы еще более «щедрые» и выделяют астронавту ориентировочно 3,6 литра.

    Технологий, позволяющих эффективно добывать чистую воду в открытом космосе:) или синтезировать ее на орбите пока нет, поэтому главную ее часть приходится доставлять с Земли специальными грузовыми космическими кораблями. Все это определяет режим жесткой экономии воды.

    Как используется вода на космической орбите

    Вода в космосе нужна не только для питья, но и для других целей:

    • для «активации» сухих продуктов питания;
    • для гигиенических целей;
    • для успешного функционирования других систем космических кораблей;

    Вода в космосе — режим экономии

    С целью рационального использования воды на космической орбите, разработаны специальные правила ее экономии. В космосе не стирают одежду, а используют свежие комплекты. Гигиенические потребности удовлетворяют специальными влажными салфетками.

    Из 8000 литров пресной воды в год, требуемых для обеспечения жизнедеятельности на космической станции, 80% из них могут быть воспроизведены непосредственно на самой станции из отходов жизнедеятельности человека и других систем космической станции.

    Так, например, американские ученые создали во многом уникальную систему очистки мочи. Как утверждают разработчики этой системы, моча и конденсат, очищенные с помощью их аппарата практически ничем не отличается от стандартной бутилированной воды. Эти системы очистки воды способны перерабатывать до 6000 литров в год.

    Источники воспроизводства воды на орбитальных станциях:

    • конденсат;
    • моча астронавтов;
    • отходы работы кислородно-водородных топливных элементов — для технических нужд.

    Будем надеяться, что на Земле чистая и вкусная вода будет нам всегда доступна и человечеству в глобальном смысле никогда не придётся использовать вышеописанные методы и технологии для ее получения и экономии.