Что такое центральная симметрия? Осевая симметрия в живой и неживой природе Сообщение на тему осевая и центральная симметрия.

Осевая симметрия и понятие совершенства

Осевая симметрия присуща всем формам в природе и является одним из основополагающих принципов красоты. С древнейших времен человек пытался

постигнуть смысл совершенства. Впервые обосновали это понятие художники, философы и математики Древней Греции. Да и само слово "симметрия" было придумано ими. Обозначает оно пропорциональность, гармоничность и тождественность частей целого. Древнегреческий мыслитель Платон утверждал, что прекрасным может быть только тот объект, который симметричен и соразмерен. И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.

Осевая симметрия как понятие

Симметрия в мире живых существ проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в

природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Геометрические формы и пропорции живых существ формирует «осевая симметрия». Определениеее формулируется следующим образом: это свойство объектов совмещаться при различных преобразованиях. Древние считали, что принципом симметричности в наиболее полном объеме обладает сфера. Эту форму они полагали гармоничной и совершенной.

Осевая симметрия в живой природе

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью.

Осевая симметрия в неживой природе

В мире нас повсюду окружают такие явления и предметы, как: тайфун, радуга, капля, листья, цветы и т.д. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации. Часто под понятием симметрия понимается регулярность смены каких-либо явлений: день и ночь, зима, весна, лето и осень и так далее. Практически, это свойство существует везде, где наблюдается упорядоченность. Да и сами законы природы - биологические, химические, генетические, астрономические, подчинены общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб. Осевая симметрия в природе - это один из «краеугольных» законов, на котором базируется мироздание в целом.

(означает «соразмерность») — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под «симметрией» понимают всякую правильность во внутреннем строении тела или фигуры.

Центральная симметрия — симметрия относительно точки.

относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

В одномерном пространстве (на прямой) центральная симметрия является зеркальной симметрией.

На плоскости (в 2-мерном пространстве) симметрия с центром А представляет собой поворот на 180 градусов с центром А. Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию.

Центральную симметрию в трёхмерном пространстве называют также сферической симметрией. Её можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.

В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей, проходящих через центр симметрии.

Осевая симметрия — симметрия относительно прямой.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Осевая симметрия имеет два определения:

- Отражательная симметрия.

В математике осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осимметрична и имеет 3 оси симметрии, если это не квадрат.

- Вращательная симметрия.

В естественных науках под осевой симметрией понимают вращательную симметриею, относительно поворотов вокруг прямой. При этом тела называют осесимметричными, если они переходят в себя при любом повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.

С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колеса.

Понятие движения

Разберем сначала такое понятие как движение.

Определение 1

Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.

Существуют несколько теорем, связанных с этим понятием.

Теорема 2

Треугольник, при движении, переходит в равный ему треугольник.

Теорема 3

Любая фигура, при движении, переходит в равную ей фигуру.

Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.

Осевая симметрия

Определение 2

Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку ${AA}_1$ и проходит через его центр (рис. 1).

Рисунок 1.

Рассмотрим осевую симметрию на примере задачи.

Пример 1

Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: ${AA}_1\bot BC$, ${AH=HA}_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).

Рисунок 2.

Определение 3

Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).

Рисунок 3.

На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.

Центральная симметрия

Определение 4

Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка ${XX}_1$ (рис. 4).

Рисунок 4.

Рассмотрим центральную симметрию на примере задачи.

Пример 2

Построить симметричный треугольник для данного треугольника какой-либо его вершины.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом ${BA=AB}_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: ${CA=AC}_1$. Треугольник $ABC$ перейдет в треугольник ${AB}_1C_1$ (Рис. 5).

Рисунок 5.

Определение 5

Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).

Рисунок 6.

На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.

Пример задачи.

Пример 3

Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.

Решение.

Изобразим схематически условие задачи.

Рисунок 7.

Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A"B"$. Для его построение сделаем следующее: проведем через точки $A\ и\ B$ прямые $m\ и\ n$, перпендикулярно прямой $l$. Пусть $m\cap l=X,\ n\cap l=Y$. Далее проведем отрезки $A"X=AX$ и $B"Y=BY$.

Рисунок 8.

Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A""B""$. Для его построения сделаем следующее: проведем прямые $AC\ и\ BC$. Далее проведем отрезки $A^{""}C=AC$ и $B^{""}C=BC$.

Рисунок 9.

, Конкурс «Презентация к уроку»

Презентация к уроку
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • совершенствование знаний об осевой симметрии;
  • познакомить с понятием центральная симметрия;
  • научить распознавать фигуры, обладающие осевой симметрией и центральной симметрией;
  • совершенствование знаний и умений при работе с чертежно - измерительными инструментами;
  • развивать пространственное воображение, конструкторские навыки и творчество;
  • способствовать развитию интереса к техническому творчеству;
  • расширение кругозора.

Материалы и инструменты:

  • Компьютер учителя (ноутбук), мультимедийный проектор, экран; слайдовая презентация к занятию; циркуль для доски; циркули ученические, треугольники, цветной картон и бумага, ножницы, клей.

План занятия:

Организационная часть (подготовка к работе).

Актуализация опорных знаний.

Повторение геометрического материала.

Практическая работа, объяснение и показ основных методов выполнения работы, соревнования.

Подведение итогов занятия, обсуждение выполненной работы.

Уборка рабочих мест.

Ход занятия

Организационный момент. Проверка готовности к занятию.

Задание №1. "Разделите треугольник" Слайд 2

ОТВЕТ (рис.2):

рис. 2

Разделите представленный на рисунке равносторонний треугольник следующим образом:

1. Тремя линиями на четыре равные части.

2. Тремя линиями на шесть равных частей.

3. Тремя линиями на три равные части.

4. Одной линией на четыре произвольные части

Задание №2. Слайд 3

В квадрате 6 на 6 клеток нарисовать геометрический орнамент, через 2 два столбика клеток его повторить до конца листа.

В древности слово "СИММЕТРИЯ" употреблялось в значении "гармония", "красота". Действительно, в переводе с греческого это слово означает "соразмерность, пропорциональность, одинаковость в расположении частей".

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого развития. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир?

Мы рассмотрим ту симметрию, которую можно непосредственно видеть - симметрию положений, форм, структур. Она может быть названа геометрической симметрией.

ОСЕВАЯ СИММЕТРИЯ Слайд 4

Равнобедренный (но не равносторонний) треугольник имеет также одну линию симметрии. А равносторонний треугольник - три линии симметрии.

У неразвёрнутого угла одна линия симметрии - прямая, на которой расположена биссектриса угла.

Прямоугольник и ромб, не являющиеся квадратами имеют по две линии симметрии , а квадрат - четыре линии симметрии.

Выступление "Зеркальная (осевая) симметрия" Приложение № 1

Найдите фигуры, обладающие линией симметрии (Задание №1) Приложение № 2

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ Слайд 8

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм.

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии.

Примером фигуры, не имеющей центра симметрии, является треугольник.

Найдите фигуры, обладающие центральной симметрией (Задание №2) Приложение № 2

Найдите фигуры, имеющие обе оси симметрии (Задание №3) Приложение № 2

Выступление "Симметрия в буквах" Приложение № 3

Раз - руки вверх махнули
И при том вздохнули
Два - три нагнулись, пол достали
А четыре - прямо встали и сначала повторяем.
Воздух сильно мы вдыхаем
При наклонах выдох дружный
Но колени гнуть не нужно.
Чтобы руки не устали,
Мы на пояс их поставим.
Прыгаем как мячики
Девочки и мальчики.

Практическая работа "Летающая тарелка" Приложение № 5

На какое геометрическое тело похожа летающая тарелка? (цилиндр)

Каким инструментом мы будем пользоваться? (циркуль)

Правила техники безопасности при работе с циркулем.

Сейчас начинаем практическую работу (рис.10):

  1. Для изготовления летающей тарелки используем картон любого цвета.
  2. На изнаночной стороне картона чертим окружность R55 (1 деталь) и R36 (2 детали).
  3. По длине картона откладываем прямоугольник длиной 220 мм и шириной 12 мм (по длине отмечаем клапаны).
  4. Вырезаем все детали.
  5. Склеиваем детали №2 и №3, получился цилиндр.
  6. Приклеиваем цилиндр на деталь №1
  7. Получилась "Летающая тарелка".
  8. Оформление по собственному замыслу.
  9. Соревнования.
  10. Подведение итогов

Итог занятия

Сегодня на занятии мы с вами повторили и изучили осевую и центральную симметрии.

  • Сколько осей симметрии имеет отрезок, прямая? (по 2).
  • Имеют ли центр симметрии отрезок, прямая, квадрат? (по2)
  • Какие из данных букв имеют ось симметрии? (М, А, Н, Е)
  • Какие из данных букв имеют центр симметрии? (Н, О) Приложение № 6

Все правильно.

Сегодня все хорошо поработали и разобрались с симметрией, но если кто - то все-таки сомневается, я вам подготовила вот такую подсказку

Награждение и поздравление победителей соревнований.

Уборка рабочих мест.

Литература.

  1. Тарасов Л. Этот удивительный симметричный мир. М., 1982 г.
  2. Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия. М., 1995 г.
  3. Интернет ресурсы.

Выполнила: Смецкая Екатерина
Ученица 11а класса

Проверила: Басарыгина А.А.

П. Локомотивный 2013г

Введение………………………………………………………… …………3 стр.
Раздел I. Симметрия в математике, физике …..…………………………4 стр.
Раздел II. Осевая симметрия………………………………………………5 стр.
Раздел III. Симметрия растений…………………………..………….……6 стр.
Раздел IV. Симметрия животных………………………………….….…..7 стр.
Раздел V. Симметрия в архитектуре…………………………….…..……8 стр.
Заключение…………………………………………………… …….………9 стр.
Список литературы………………………………… ……………….……...10 стр.

Введение

Тема моего реферата была выбрана после изучения курса «Геометрия 10-11 класса», раздела «Осевая и центральная симметрия». Остановилась я именно на этой теме не случайно, мне хотелось узнать принципы симметрии, её виды, разнообразие её в живой и неживой природе.
Как говорил академик А.В. Шубников, посвятивший изучению симметрии всю свою долгую жизнь: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм».
Под симметрией (от греч. symmetria - соразмерность) в широком смысле понимают правильность в строении тела и фигуры. Учение о симметрии представляет собой большую и важную ветвь тесно связанную с науками разных отраслей. С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например, зубчатые колеса.
Замечу также, что симметрия широко используется в искусстве, особенно в европейском. Но в некоторых восточных культурах, например в японской, также широко используется асимметрия. Такая, подчеркнуто асимметричная структура, свойственна, в частности, канону дзэнского сада камней. Аналогичный принцип относится у японцев и к построению изображения на картине, которое должно быть сдвинуто к краю и занимает сравнительно небольшую площадь, уравновешиваясь более значительным свободным полем, символизирующим беспредельность мира.
Мне это было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие области науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей.
Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

Раздел I. Симметрия в математике, физике

По справедливому замечанию Германа Вейля (известный математик прошлого столетия), у истоков симметрии лежит математика. Замечательные слова, сказанные им: «Симметрия… есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Понятие симметрии раскрывается в учебнике «Геометрия 10-11», и для осознания этого понятия в школе данной формулировки я считаю достаточно.
Но вместе с тем симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Математики вкладывают в понятие симметрия точный математический смысл, рассматривают специальные виды симметрии. И в результате симметрия становится мощным средством математических исследований, помогает решать трудные задачи.
Итак, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. И если говорить о геометрических объектах, то симметрию можно будет называть геометрической, если о физических явлениях, то – физическая симметрия.
Симметрия – одно из фундаментальных понятий в современной физике, играющее важнейшую роль в формулировке современных физических теорий. Симметрии, учитываемые в физике, довольно разнообразны, начиная с симметрий обычного трехмерного «физического пространства» (такими, например, как зеркальная симметрия), кончая более абстрактными и менее наглядными. Некоторые симметрии в современной физике считаются точными, другие – лишь приближёнными. Исторически использование симметрии в физике прослеживается с древности, но наиболее революционным для физики в целом, по-видимому, стало применение такого принципа симметрии, как принцип относительности (как у Галилея, так и у Пуанкаре-Лоренца-Эйнштейна), ставшего затем как бы образцом для введения и использования в теоретической физике других принципов симметрии, которые привели к общей теории относительности Энштейна.
В теоретической физике поведение физической системы описывается обычно некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин. Например, следует, что инвариантность (неизменность) уравнений движения тела с течением времени приводит к закону сохранения энергии; инвариантность относительно сдвигов в пространстве – к закону сохранения импульса; инвариантность относительно вращений – к закону сохранения моментов импульса.

Раздел III. Осевая симметрия

Понятие осевой симметрии представлено следующим образом: «Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая a называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.
В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.
Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат- четыре оси симметрии. У окружности их бесконечно много - любая прямая, проходящая через её центр, является осью симметрии.
Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

Раздел IV. Симметрия растений

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.
Среди цветов наблюдаются поворотные симметрии разных порядков. Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120 ? , для колокольчика – 72 ? , для нарцисса – 60 ? . Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 360 ? . Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно. Особенно часто среди цветов встречается симметрия пятого порядка. Это такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых деревьев – вишня, яблоня, груша, мандарин и др., цветы плодово-ягодных растений – земляника, ежевика, малина, шиповник; садовые цветы – настурция, флокс и др.
В пространстве существуют тела, обладающие винтовой симметрией, т. е. совмещающиеся со своим первоначальным положением после поворота на угол вокруг оси, дополненного сдвигом вдоль той же оси.
Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.
Билатеральной симметрией обладают также органы растений, например, многие стебли с двурядно расположенными листьями или боковыми побегами, стебли многих кактусов и т.п. Билатеральными называются также листья, у которых верхняя и нижняя поверхности различны по строению.
В ботанике часто встречаются радиально симметрично построенные цветы: 3 плоскости симметрии имеет водокрас лягушачий, 4 – лапчатка прямая, 5 – колокольчик, 6 – безвременник.

Раздел V. Симметрия животных

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды – от простейших до самых сложных. Симметрия в строение животных – почти общее явление, хотя почти всегда встречаются исключения из общего правила.
Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.
В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.
Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

Радел VI. Симметрия в архитектуре

Принцип симметрии играет важную роль и в архитектуре. «Архитектура – по словам Н.В. Гоголя – это летопись мира». Она несет в себе уникальную информацию о жизни людей в давно прошедшие исторические эпохи.
Термин «симметрия» в разные исторические эпохи использовался для обозначения разных понятий. Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем. Ещё в Древности греки строили пирамиды строго симметрично. Те же развалины Парфенона на Акрополе служат доказательством этого.
Симметрия в Средневековье присутствовала в романском стиле (сооружения в форме креста), в готике (архитектурные конструкции имели прямоугольный или крестообразный вид). На смену готике пришёл стиль «барокко», который использовал асимметрию. Но смену этому стилю приходит «классицизм» – самый симметричный из всех известных стилей. Практически поворот на 180 градусов произошел при смене классицизма модерном. Стиль «модерн» использует асимметрию – волнообразное построение архитектурных композиций. В настоящее время каких-либо стилей нет, каждый архитектор работает в своей манере.
Композиция в русской традиционной архитектуре в значительной степени основывалась на специфическом применении симметрии, широко применялись как классическая, так и неклассические симметрии. Применение симметрии основывалось на особенностях зрительного восприятия сооружений в натуре. Поэтому на чертежах и планах симметрия может отсутствовать.
В искусстве симметрия играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия.
Немалую роль симметрия играет в архитектурной композиции - закономерное расположение частей формы относительно друг друга. История архитектуры полна всеми видами симметричных преобразований, основными из которых являются отражение, поворот и перенос.

Заключение

И в заключении хочу сказать о том, что быть прекрасным значит быть симметричным и соразмерным.
Доктор Марио Ливио (Mario Livio) из института Space Telescope Science Institute в Балтиморе сделал предположение, что стремление человека к упорядоченным структурам и симметричным объектам не позволяет нам видеть окружающий мир таким, какой он есть в действительности, и законы природы на самом деле могут и не подчиняться законам симметрии, сообщает Live Science.
В естественных науках также царят законы симметрии. В математике симметрия выражена наиболее чётко. В физике это симметрия пространственно-временных преобразований. Если бы законы природы не были основаны на свойстве симметрии, их даже не смогли бы открыть - они менялись бы в зависимости от того, где, когда и в каком направлении проводился эксперимент.
Немало примеров, демонстрирующих правильность формы объектов или предметов, созданных человеком. Симметрия присутствует везде: в регулярности смены дня и ночи, времён года, в ритмичном построении стихотворения, практически там, где присутствует какая-то упорядоченность и регулярность.
В своем реферате я попыталась рассмотреть симметрию в целом, как соразмерность, пропорциональность, одинаковость в расположении частей в живой и неживой природе, в словах, числах и самой математике. И если в древности слово «симметрия» употреблялось в значении «гармония», «красота
и т.д.................