Ламинарное и турбулентное движение жидкости. Турбулентное течение Механизм турбулентного режима течения жидкости

Турбулентное движение жидкости наиболее часто встречается как в трубах, так и в различных открытых руслах. В связи со сложностью турбулентного движения механизм турбулентности потока до настоящего времени все еще недостаточно полно изучен.

Для турбулентного движения характерно неупорядоченное перемещение частиц жидкости. Происходит движение частиц в продольном, вертикальном и поперечном направлениях, в результате этого наблюдается интенсивное перемешивание их в потоке. Частицы жидкости описывают весьма сложные траектории движения. При соприкосновении турбулентного потока с шероховатой поверхностью русла частицы приходят во вращательное движение, т.е. возникают местные вихри различного размера.

Скорость в точке турбулентного потока жидкости получила название местной (актуальной) мгновенной скорости . Мгновенная скорость по координатным осям х , у , z - , ,:

- продольная составляющая скорости по направлению движения потока;

- окружная составляющая;

- поперечная составляющая скорости.

.

Все составляющие мгновенной скорости (, ,)меняются во времени. Изменения составляющих мгновенной скорости во времени называются пульсацией скорости по координатным осям. Следовательно, турбулентное движение в действительности является неустановившимся (нестационарным).

Скорости в определенной точке турбулентного потока жидкости можно измерить, например, с помощью лазерного прибора (ЛДИС). В результате измерений зафиксируется пульсация скоростей по направлениям х , у , z .

На рис. 4.7 изображен график пульсации продольной мгновенной скорости во времени при условии установившегося движения жидкости. Продольные скорости непрерывно изменяются, колебания их происходят около некоторой постоянной скорости. Выделим на графике два достаточно больших отрезка времени и Определим за время и среднюю по времени скорость .

Рис. 4.7. График пульсации продольной мгновенной скорости

Осредненная (средняя по времени) скорость может быть найдена так:

и
. (4.70)

Величина будет одинаковой на отрезках времени и. На рис. 4.7 площадь прямоугольников высотой и шириной или
будет равновелика площади, заключенной между пульсационной линией и значениями времени (отрезок и
), что и следует из зависимостей (4.70).

Разность между фактической мгновенной скоростью и осредненным значением - пульсационная составляющая в продольном направлении движения :

. (4.71)

Сумма пульсационных скоростей за принятые отрезки времени в рассматриваемой точке потока будет равна нулю.

На рис. 4.8 показан график пульсации поперечной мгновенной скорости . Для рассматриваемых отрезков времени

и
. (4.72)

Рис. 4.8. График пульсации поперечной мгновенной скорости

Сумма положительных площадей на графике, ограниченном пульсационной кривой, равна сумме отрицательных площадей. Пульсационная скорость в поперечном направлении равна поперечной скорости ,
.

В результате пульсации между соседними слоями жидкости возникает интенсивный обмен частицами, что приводит к непрерывному перемешиванию. Обмен частицами и, соответственно, массами жидкости в потоке в поперечном направлении приводит к обмену количеством движения (
).

В связи с введением понятия осредненной скорости турбулентный поток заменяется моделью потока, частицы которого движутся со скоростями, равными определенным продольным скоростям , и гидростатические давления в разных точках потока жидкости будут равны осредненным давлениям р . Согласно рассматриваемой модели поперечные мгновенные скорости
, т.е. будет отсутствовать поперечный массообмен частицами между горизонтальными слоями движущейся жидкости. Модель такого потока называется осредненным потоком. Такую модель турбулентного потока предложили Рейнольдс и Буссинеск (1895-1897). Приняв такую модель, можно рассматривать турбулентное движение как движение установившееся . Если в турбулентном потоке осредненная продольная скорость является постоянной, тогда условно можно принять струйчатую модель движения жидкости. На практике при решении инженерных практических задач рассматриваются только осредненные скорости, а также распределение этих скоростей в живом сечении, которые характеризуются эпюрой скоростей. Средняя скорость в турбулентном потокеV - средняя скорость из осредненных местных скоростей в разных точках.

Хаотичное, неупорядоченное движение жидких частиц существенным образом влияет на характеристики турбулентных течений. Эти течения жидкости – неустановившиеся. Благодаря этому в каждой точке пространства скорости изменяются с течением времени. Мгновенное значение скорости можно выразить:

(2.42)

где – осредненная по времени скорость по направлению x , – пульсационная скорость по этому же направлению. Обычно осредненная скорость сохраняет во времени постоянное значение и направление, поэтому такое течение нужно принимать как среднеустановившееся. Когда рассматривается профиль скоростей турбулентного течения для какой-либо области, обычно рассматривают профиль осредненной скорости.

Рассмотрим поведение турбулентного потока жидкости около твердой стенки (рис. 2.17).

Рис. 2.17. Распределение скорости около твердой стенки

В ядре потока за счет пульсационных скоростей происходит непрерывное перемешивание жидкости. У твердых стенок поперечные движения частиц жидкости невозможны.

Около твердой стенки жидкость течет в ламинарном режиме.
Между ламинарным пограничным слоем и ядром потока существует переходная зона.

Движение жидкости при турбулентном режиме всегда сопровождается значительно большей затратой энергии, чем при ламинарном. При ламинарном режиме энергия расходуется на вязкое трение между слоями жидкости; при турбулентном же режиме, помимо этого, значительная часть энергии затрачивается на процесс перемешивания, вызывающий в жидкости дополнительные касательные напряжения.

Для определения напряжения сил трения в турбулентном потоке используется формула:

где – напряжение вязкого течения, – турбулентное напряжение, вызванное перемешиванием. Как известно, определяется законом вязкого трения Ньютона:

t в
(2.44)

Следуя полуэмпирической теории турбулентности Прандтля, принимая, что величина поперечных пульсаций скорости имеет в среднем один и тот же порядок, что и продольные пульсации, можно записать:

. (2.45)

Здесь r – плотность жидкости, l – длина пути перемешивания, – градиент осредненной скорости.

Величина l , характеризующая средний путь пробега частиц жидкости в поперечном направлении, обусловлена турбулентными пульсациями.
По гипотезе Прандтля, длина пути перемешивания l пропорциональна расстоянию частицы от стенки:

где c – универсальная постоянная Прандтля.

В турбулентном потоке в трубе толщина гидродинамического пограничного слоя растет значительно быстрее, чем для ламинарного.
Это приводит к уменьшению длины начального участка. В инженерной практике обычно принимают:

(2.47)

Поэтому довольно часто влиянием начального участка
на гидродинамические характеристики потока пренебрегают.

Рассмотрим распределение осредненной скорости по сечению трубы. Примем касательное напряжение в турбулентном потоке постоянным
и равным напряжению в стенке . Тогда после интегрирования уравнения (2.44) получим:

. (2.48)

Здесь – величина, имеющая размерность скорости, поэтому называется динамической скоростью.

Выражение (2.48) представляет собой логарифмический закон распределения осредненных скоростей для ядра турбулентного потока.

Путем несложных преобразований формулу (2.48) можно привести
к следующему безразмерному виду:

(2.49)

где – безразмерное расстояние от стенки; M – константа.

Как показывают опыты, c имеет одинаковое значение для всех случаев турбулентного течения . Значение M было определено опытами Никурадзе: . Итак, имеем:

(2.50)

В качестве безразмерного параметра, характеризующего толщину соответствующих зон, используется комплекс :

вязкий ламинарный подслой: ,

переходная зона: ,

турбулентное ядро: .

При турбулентом режиме отношение осредненной скорости
к максимальной осевой составляет от 0,75 до 0,9.

Зная закон распределения скоростей (рис. 2.18), можно найти величину гидравлических сопротивлений. Однако для определения гидравлических сопротивлений можно использовать более простое соотношение, а именно: критериальное уравнение движения вязкой жидкости, полученное ранее, в первой части дисциплины.

Рис. 2.18. Распределение скоростей в трубе

при ламинарном и турбулентном режимах

Для горизонтальной прямой трубы в случае напорного течения вязкой жидкости критериальное уравнение имеет вид:

(2.51)

где – геометрические комплексы, – критерий Рейнольдса, – критерий Эйлера. Они определяются как:

где ∆ – абсолютная шероховатость трубы, l – длина трубопровода,
d – внутренний диаметр трубы. Из опыта известно, что потери давления прямо пропорциональны . Поэтому можно записать:

(2.52)

Далее обозначим неизвестную функцию , распишем критерий Эйлера . Тогда из уравнения (2.52) для потери давления получим:

(2.53)

где l – коэффициент гидравлического трения, w – средняя скорость потока.

Полученное уравнение носит название уравнение Дарси – Вейсбаха. Уравнение (2.53) может быть представлено в виде потери напора:

(2.54)

Таким образом, расчет потери давления или напора сводится к определению коэффициента гидравлического трения l.

График Никурадзе

Среди многочисленных работ по исследованию зависимости выберем работу Никурадзе. Никурадзе подробно исследовал эту зависимость для труб с равномерно-зернистой поверхностью, созданной искусственно (рис. 2.19).

.

Рис. 2.19. График Никурадзе

Значение коэффициента определяется по эмпирическим формулам, полученным для различных областей сопротивления по кривым Никурадзе.

1. Для ламинарного режима течения, т.е. при , коэффициент l для всех труб независимо от их шероховатости определяется из точного решения задачи о ламинарном течении жидкости в прямой круглой трубе по формуле Пуазейля:

2. В узкой области наблюдается скачкообразный рост коэффициента сопротивления. Эта область перехода от ламинарного режима к турбулентному характеризуется неустойчивым характером течения. Здесь наиболее вероятен на практике турбулентный режим
и правильнее всего пользоваться формулами для зоны 3. Можно также применить эмпирическую формулу:

3. В области гидравлически гладких труб при толщина ламинарного слоя у стенки d больше абсолютной шероховатости стенок D, влияние выступов шероховатости, омываемых безотрывным потоком, практически не сказывается, и коэффициент сопротивления вычисляется здесь на основе обобщения опытных данных
по эмпирическим соотношениям, например по формуле Блаузиуса:

4. В диапазоне чисел Рейнольдса наблюдается переходная область от гидравлически гладких труб к шероховатым. В этой области (частично шероховатых труб), когда , т.е. выступы шероховатости с высотой, меньшей средней величины D, продолжают оставаться в пределах ламинарного слоя, а выступы с высотой, большей средней, оказываются в турбулентной области потока, проявляется тормозящее действие шероховатости. Коэффициент l в этом случае подсчитывается также из эмпирических соотношений, например
по формуле Альштуля:

(2.58)

5. При толщина ламинарного слоя у стенки d достигает своего минимального значения, т.е. и не меняется
с дальнейшим ростом числа Re. Поэтому l не зависит от числа Re,
а зависит лишь от e. В этой области (шероховатых труб или области квадратичного сопротивления) для нахождения коэффициента может быть рекомендована, например, формула Шифринсона:

(2.59)

В этой зоне значение l находится в пределах .

Были проведены исследования для определения l с естественной шероховатостью. Для этих труб вторая зона не определяется. Для расчета
l обычно предлагаются вышеуказанные формулы.

Турбулентное течение

Турбулентное течение

течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. т. связано с неустойчивостью ламинарного течения при больших Рейнольдса числах (см. Переход ламинарного течения в турбулентное). При исследовании Т. т. различают пристенные течения (турбулентный пограничный слой , течения в трубах и каналах) и свободные течения (турбулентные струи , следы аэродинамические, слои смешения).
Т. т. имеют широкое распространение в природных явлениях и технических устройствах и характеризуются огромными по сравнению с ламинарными течениями значениями коэффициента переноса (см. Переносные свойства среды), что приводит к гораздо б(ó)льшим силам трения (см. Турбулентное трение), тепловым и массовым потокам. Во многих технических приложениях это является вредным и заставляет искать пути для их снижения (см. , например, Ламинаризация пограничного слоя); в некоторых случаях наоборот - именно реализация Т. т. приводит к уменьшению аэродинамического сопротивления тела (см. Кризис сопротивления). С другой стороны, многие технические устройства (авиационные двигатели, эжекторы и т. п.) используют высокую интенсивность процессов перемешивания и повышенную скорость распространения химических реакций (например, горения) в Т. т. Закономерности Т. т. часто определяют предел совершенствования технических устройств.
Следуя О. Рейнольдсу, мгновенные значения газодинамических переменных в Т. т. разбивают на 2 слагаемых - осреднённую величину и её пульсацию (например, компонент ui вектора скорости и представляется в виде
ui = +u(′)i, а давление
р = +р",
где знак <...> обозначает величину, усреднённую по времени, штрих - её пульсацию). В этом случае Т. т. определяется, с одной стороны, полем осреднённых газодинамических переменных и, с другой стороны, статистическими параметрами пульсаций - кинетической энергией пульсаций
E = 3/2 или связанной с ней интенсивностью турбулентности
(ε) = ½/, интегральным масштабом турбулентности L, характеризующим размер вихрей, содержащих основную долю энергии Е или, в общем случае, всевозможными моментами пульсирующих величин, являющихся осреднёнными значениями их произведений -

, ,
и т. д. - и относящихся к всевозможным точкам пространства и моментам времени, или функциям плотности вероятности - Р(u1), Р(u1, u2) и т. д. Параметры пульсаций могут меняться в широких пределах. Например, в рабочих частях аэродинамических труб в зависимости от их типа (ε) = 0,01-2%; на оси длинных трубопроводов (ε) = 4-5%, L = (0,03-0,04)d (d - диаметр трубы); в трактах ВРД значения в могут достигать 10-20%, а L - (0,1-0,3)d.
В 1894 получил уравнения для осреднённой скорости (уравнения Рейнольдса)

(i, (α) = 1, 2, 3) и уравнение для энергии турбулентности. Здесь (ρ) - плотность; (ν) - кинематическая вязкость; x(α) - координаты (по (α) подразумевается суммирование); t - время. Эти уравнения отличаются от Навье - Стокса уравнений наличием дополнительных турбулентных напряжений (напряжений Рейнольдса) τi j = - ρ , обусловленных пульсационным движением. В отличие от молекулярных напряжений, которые определяются локальными характеристиками осреднённого течения, напряжения Рейнольдса связаны с крупномасштабной турбулентностью и поэтому в каждой точке течения зависят от распределения осреднённой скорости и особенностей пульсационного движения в достаточно большой её окрестности.
Часто для представления напряжений Рейнольдса привлекается понятие турбулентной вязкости, введённое французским учёным Ж. Буссинеском в 1897. Кинематическая турбулентная вязкость (ν)т в отличие от кинематической молекулярной вязкости (ν) не является физической характеристикой среды, а определяется статистическими характеристиками потока; эта величина переменная и в некоторых областях течения может даже принимать отрицательные значения. Поэтому картина осреднённого движения, законы сопротивления, теплообмена и т. д. для Т. т., например в каком-либо тракте, качественно отличаются от ламинарных течений в этом же тракте.
В свободных Т. т. для струйных автомодельных движений наблюдаются одинаковые распределения средней скорости и статистических параметров турбулентности поперёк потока, которые практически не зависят от (ν). Для Т. т. около стенки, параллельной направлению потока, также существуют универсальные распределения параметров, определяющиеся напряжением трения на стенке и значением (ν) («универсальный закон стенки», Л. Прандтль, 1932). При этом непосредственно вблизи стенки, где молекулярные напряжения много больше напряжений Рейнольдса, имеет место линейная зависимость скорости потока от расстояния до стенки, а в пристеночной области в каналах и в свободных течениях, где преобладают турбулентные напряжения, наблюдается логарифмическая зависимость (логарифмический ). Распределение максимальной и текущей скоростей в канале в ядре потока также носит универсальный характер («закон дефекта скорости», Т. Карман, 1930). Аналогичное распределение наблюдается и во внешней части пограничного слоя, однако в отличие от канала, где логарифмический профиль существует почти до его центра, во внешней части пограничного слоя главным образом из-за явления перемежаемости имеет место отклонение от универсального закона стенки, пропорциональное распределению скорости для турбулентного следа - «закон следа» (Д. Коулс, 1956).
Принципиальная трудность теоретического исследования Т. т. связана с незамкнутостью системы уравнений движения (число уравнений меньше числа независимых переменных). В частности, в уравнениях Рейнольдса неизвестна между турбулентными напряжениями и полем осреднённой скорости. Это привело к появлению большого числа полуэмпирической теорий Т. т.; в них для замыкания точных уравнений для осреднённых величин используются дополнительные приближённые соотношения, основанные на предположении о существовании тех или иных равновесных структур в Т. т.
Теории, использующие понятия «пути смешения» - характерного расстояния, на котором объёмы жидкости теряют индивидуальность (Прандтль, 1925; Карман, 1930), - предполагают наличие равновесия между осреднённым течением и крупномасштабной турбулентностью и поэтому применимы в области универсального закона стенки, автомодельных режимов течения и т. д. Большую область применения имеют различные модификации так называемые двухпараметрические модели турбулентности, впервые предложенной советский учёным А. Н. Колмогоровым и использующей уравнения для Е и L или их комбинации, при этом
(ν)τ Турбулентное течение (EL)½.
Теории, использующие уравнения непосредственно для турбулентных напряжений (например, теория И. Ротта, 1951), справедливы для течений, в которых значения пульсаций и размеры вихрей существенно различны по направлениям (неизотропная ) - при обтекании тел турбулентным потоком, течениях в каналах переменного сечения, при действии электрических и магнитных сил и т. д.
Полуэмпирические теории при использовании ЭВМ позволяют рассчитывать многие практически важные Т. т., однако недостаточная универсальность таких теорий и необходимость использования в них эмпирических коэффициентов или даже функций обусловливают необходимость при решении прикладных задач сочетания экспериментальных и теоретических методов.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Турбулентное течение" в других словарях:

    - (от лат. turbulentus бурный, беспорядочный), форма течения жидкости или газа, при к рой их элементы совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости или газа (см.… … Физическая энциклопедия

    - (от лат turbulentus бурный беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают хаотические… … Большой Энциклопедический словарь

    - (от латинского turbulentus бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают… … Современная энциклопедия - (от латинского turbulentus бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают… … Иллюстрированный энциклопедический словарь

    - (от лат. turbulentus бурный, беспорядочный * a. turbulent flow; н. Wirbelstromung; ф. ecoulement turbulent, ecoulement tourbillonnaire; и. flujo turbulento, corriente turbulenta) движение жидкости или газа, при котором образуются и… … Геологическая энциклопедия

    турбулентное течение - Форма течения воды или воздуха, при которой их частицы совершают неупорядоченные движения по сложным траекториям, что приводит к интенсивному перемешиванию. Syn.: турбулентность … Словарь по географии

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ - вид течения жидкости (или газа), при котором их малые объёмные элементы совершают неустановившиеся движения по сложным беспорядочным траекториям, что приводит к интенсивному перемешиванию слоёв жидкости (или газа). Т. т. возникает в результате… … Большая политехническая энциклопедия

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений.

Рис. 8.1. Пульсация скорости в турбулентном потоке

Скорость беспорядочно колеблется около некоторого осреднённого v оср по времени значения, которое в данном случае остается постоянным. Турбулентное течение всегда является неустановившимся, так как значения скоростей и давлений, а также траектория частиц, изменяются по времени.

Распределение скоростей при турбулентном течении более равномерное, а нарастание скорости у стенки более крутое, чем при ламинарном течении.

Рис. 8.2. Профили скоростей в ламинарном

и турбулентном потоках

Так как при турбулентном течении отсутствует слоистость потока и происходит перемешивание жидкости, закон трения Ньютона в этом случае выражает лишь малую часть полного касательного напряжения.

Благодаря перемешиванию жидкости и непрерывному переносу количества движения в поперечном направлении касательное напряжение τ 0 на стенке трубы в турбулентном потоке значительно больше, чем в ламинарном. В связи с этим потери энергии при турбулентном течении жидкости в трубах также получаются иными, нежели при ламинарном.

Рис. 8.3. Зависимость от v и Q

Ввиду сложности турбулентного течения и трудностей его аналитического исследования до настоящего времени для него не имеется достаточно строгой и точной теории.

Турбулентное движение в практических расчетах описывают не мгновенными, а осредненными во времени скоростями

где Т – интервал усреднения.

Разность называют пульсационной скоростью.

Для оценки пульсационных составляющих (добавок) скорости вводят стандарт, равный среднеквадратичному отклонению пульсационных добавок

Степенью (интенсивностью) турбулентности называют отношение среднеквадратичного отклонения пульсационной составляющей (добавки) скорости к характерной скорости потока (к осредненной местной скорости в данной точке, к средней по вертикали, к средней по живому сечению, к максимальной скорости). Обычно за характерную скорость принимают среднюю скорость потока, осредненную местную скорость в данной точке или динамическую скорость

где R – гидравлический радиус;

J – гидравлический уклон.

Исследования показывают, что наиболее общие результаты для описания пульсирующих скоростей при турбулентном движении получаются, если в качестве масштаба скоростей принять динамическую скорость , т.е.

В качестве примера рассмотрим поток жидкости в прямолинейной цилиндрической трубе круглого сечения (осесимметричный поток). Структуру потока в трубе при турбулентном режиме движения обычно представляют в виде приближенной двухслойной схемы (модели). На твердой стенке скорости, в том числе и пульсационные, равны нулю. Вблизи твердой стенки находится очень тонкий слой, в котором преимущественное влияние имеют касательные напряжения, рассчитываемые по закону вязкого трения Ньютона. Поэтому рассматриваемый слой называют вязким подслоем потока.



В пределах вязкого подслоя скорость линейно увеличивается от нуля на стенке до некоторого значения на границе слоя. Раньше считали, что в пределах этого тонкого слоя движение полностью ламинарное, пульсации скорости, давления, касательного напряжения в нем отсутствуют и поэтому его называли ламинарным подслоем (пленкой).

Остальную часть поперечного сечения трубы считают занятой турбулентным ядром потока, где и происходят интенсивные пульсации скорости и перемешивание частиц жидкости.

Уравнения движения, выраженные через осредненные скорости для случая турбулентного неустановившегося движения несжимаемой жидкости носят название уравнений Рейнольдса и имеют вид

В проекции на ось х:

Величины типа , входящие в уравнение Рейнольдса, называются турбулентными напряжениями. Связь между ними и скоростями деформаций устанавливается на основе гипотез, составляющих основу полуэмпирических теорий турбулентности (гипотеза М. Буссинеска, гипотеза Л. Прандтля, гипотеза Дж. Тейлора, гипотеза Т. Кармана и др.). В большинстве случаев для практических расчетов, связанных с турбулентным течением жидкостей в трубах, пользуются экспериментальными данными, систематизированными на основе теории гидродинамического подобия.

Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является эмпирическая формула, называемая формулой Дарси - Вейсбаха и имеющая следующий вид:

Эта основная формула применима как при турбулентном, так и при ламинарном течении; различие заключается лишь в значениях коэффициента .

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

(от лат. turbulentus - бурный, беспорядочный), форма течения жидкости или газа, при к-рой их совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости или газа (см. ТУРБУЛЕНТНОСТЬ). Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом тв. тел, а также т. н. свободные Т. т.- струи, следы за движущимися относительно жидкости или газа тв. телами и зоны перемешивания между потоками разной скорости, не разделёнными к.-л. тв. стенками. Т. т. в каждом из перечисленных случаев отличается от соответствующего ему ламинарного течения как своей сложной внутр. структурой (рис. 1), так и распределением

Рис. 1. Турбулентное течение.

осреднённой скорости по сечению потока (рис. 2) и интегральными хар-ками - зависимостью средней по сечению или макс. скорости, расхода, а также коэфф. сопротивления от Рейнольдса числа Re, Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболич. профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей

Рис. 2. Профиль осреднённой скорости: а - при ламинарном течении; б - при турбулентном течении.

кривизной в центр. части течения. За исключением тонкого слоя около стенки профиль скорости описывается логарифмич. законом (т. е. линейно зависит от логарифма расстояния до стенки). Коэфф. сопротивления l=8tw/rv2cp (где tw - трения на стенке, r - жидкости, vср - средняя по сечению скорость потока) связан с Re соотношением:

l1/2 = (1/c?8) ln (l1/2Re)+B,

где c. и B - числовые постоянные. В отличие от ламинарных пограничных слоев, турбулентный обычно имеет отчётливую границу, беспорядочно колеблющуюся со временем (в пределах 0,4 б - 1,2d, где d - расстояние от стенки, на к-ром осреднённая скорость равна 0,99 v, a v - скорость вне пограничного слоя). Профиль осреднённой скорости в пристенной части турбулентного пограничного слоя описывается логарифмич. законом, а во внеш. части скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону. Зависимость l от Re здесь имеет вид, аналогичный указанному выше.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: в каждом сечении c=const любого из этих Т. т. на не слишком малых расстояниях х от нач. сечения можно ввести такие масштабы длины и скорости L(x) и v(x), что безразмерные статистич. хар-ки гидродинамич. полей (в частности, профили осреднённой скорости), полученные при применении этих масштабов, будут одинаковыми во всех сечениях.

В случае свободных Т. т. область пр-ва, занятая завихрённым Т. т., в каждый момент времени имеет чёткую, но очень неправильную форму границ, вне к-рых течение потенциально. Зона перемежающейся турбулентности оказывается здесь значительно более широкой, чем в пограничных слоях.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

Форма течения жидкости или газа, при к-рой вследствие наличия в течении многочисл. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям (см. Турбулентность), в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах )в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепло-и массообмена.

Профиль осреднённой скорости Т. т. в трубах и каналах отличается от параболич. профиля ламинарных течений меньшей кривизной у оси и более быстрым возрастанием скорости у стенок, где за исключением тонкого вязкого подслоя (толщиной порядка , где v - вязкость, - "скорость трения", t-турбулентное напряжение трения, r-плотность) профиль скорости описывается универсальным по Re логарифмич. законом:

где y 0 равно при гладкой стенке и пропорционально высоте бугорков при шероховатой.

Турбулентный пограничный слой в отличие от ламинарного обычно имеет отчётливую границу, нерегулярно колеблющуюся во времени в пределах где d- расстояние от стенки, на к-ром скорость достигает 99% от значения вне пограничного слоя; в этой области скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: с расстоянием x от нач. сечения масштаб длины L растёт как х т, а масштаб скорости U убывает как х -n , где для объёмной струи т = п = 1, для плоской т =1, n =1/2, для объёмного следа т = 1/3, n = 2/3, для плоского следа т=п=1/2, для зоны перемешивания m= 1, n = 0. Граница турбулентной области здесь также отчётливая, но нерегулярной формы и колеблется шире, чем у пограничных слоев, в плоском следе - в пределах (0,4-3,2) L.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Абрамович Г. Н., Теория турбулентных струй, М., 1960; Монин А. С., Яглом А. М., Статистическая , 2 изд., ч . 1, СПб., 1992. А. С. Монин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ" в других словарях:

    Течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. т. связано с неустойчивостью… … Энциклопедия техники

    - (от лат turbulentus бурный беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают хаотические… … Большой Энциклопедический словарь

    Современная энциклопедия

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ, в физике движение текучей среды, при котором происходит беспорядочное перемещение ее частиц. Характерно для жидкости или газа с высоким ЧИСЛОМ РЕЙНОЛЬДСА. см. также ЛАМИНАРНОЕ ТЕЧЕНИЕ … Научно-технический энциклопедический словарь

    турбулентное течение - Течение, в котором частицы газа движутся сложным неупорядоченным образом и процессы переноса происходят на макроскопическом, а не на молекулярном уровне. [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины виды течений… … Справочник технического переводчика

    Турбулентное течение - (от латинского turbulentus бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают… … Иллюстрированный энциклопедический словарь

    - (от лат. turbulentus бурный, беспорядочный * a. turbulent flow; н. Wirbelstromung; ф. ecoulement turbulent, ecoulement tourbillonnaire; и. flujo turbulento, corriente turbulenta) движение жидкости или газа, при котором образуются и… … Геологическая энциклопедия

    турбулентное течение - Форма течения воды или воздуха, при которой их частицы совершают неупорядоченные движения по сложным траекториям, что приводит к интенсивному перемешиванию. Syn.: турбулентность … Словарь по географии

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ - вид течения жидкости (или газа), при котором их малые объёмные элементы совершают неустановившиеся движения по сложным беспорядочным траекториям, что приводит к интенсивному перемешиванию слоёв жидкости (или газа). Т. т. возникает в результате… … Большая политехническая энциклопедия

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия