Фрактальная природа. Что такое фрактал? Какие есть фракталы в природе

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них - еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них - мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты - фракталами (от латинского fractus - изломанный).

С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон (Lewis Fry Richardson) - весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит - у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона (Richardson effect).

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов - ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты - элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад).

Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в точные науки, мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.

Немного сухих фактов

Само слово «фрактал» с латыни переводится как “частичный”, “разделенный”, “раздробленный”, а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.

Историческая справка, или Как все начиналось

На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора – «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид – С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.

Динамические, или алгебраические фракталы

К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.

Человек с пространственным воображением

Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.

Жюлиа – Мандельброт

Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».

Л. Карпентер: искусство, созданное природой

Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал – это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.

Решение Карпентера

Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те – на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.

Первая 3D-визуализация на фрактальном алгоритме

Уже через несколько лет Лорен применил свои наработки в масштабном проекте – анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма “Star Trek”. Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.

Том Беддард

В прошлом лазерный физик, а ныне цифровых дел мастер и художник, Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.

Фракталы в природе

Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина – они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.

Музыкальная пауза

Оказывается, фракталы – это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.

Индикатор-фрактал

Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.

В заключение

Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.



Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).


Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.


В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника. По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения - и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Источник: http://www.iknowit.ru/

Фракталы и древние мандалы

Это мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала — это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные


Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на эту фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других — жаберных — проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.


Это родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства



Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.


Еще одни типичнейшим представителем фрактального подводного мира является коралл.
В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных .

В очередной раз, исполняя ритуал на кухне с ножом и разделочной доской, а потом, опустив нож в холодную воду, я вся в слезах в очередной раз придумывала, как бороться со слезоточивым фракталом, который практически ежедневно появляется на моих глазах.

Принцип фрактальности тот же, что и у знаменитой матрешки - вложенность. Именно поэтому фрактальность замечается не сразу. К тому же, светлый однородный окрас и его природная способность вызывать неприятные ощущения не способствуют пристальному наблюдению за мирозданием и выявлению фрактальных математических закономерностей.

А вот салатный лук сиреневого цвета в силу своего окраса и отсутствия слезоточивых фитонцидов навел на размышления о природной фрактальности этого овоща. Конечно, фрактал он незамысловатый, обычные окружности разного диаметра, можно даже сказать примитивнейший фрактал. Но не мешало бы вспомнить, что шар считается идеальной геометрической фигурой в пределах нашей Вселенной.

О полезных свойствах лука в Интернете опубликовано немало статей, но как-то никто не пытался изучать этот природный экземпляр с точки зрения фрактальности. Я могу только констатировать факт полезности применения фрактала в виде лука на своей кухне.

P.S. А овощерезку для измельчения фрактала я уже приобрела. Теперь придется поразмышлять, насколько фрактален такой полезный овощ, как обычная белокачанная капуста. Тот же принцип вложенности.

Фракталы в народном творчестве


Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.


Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.



Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Фракталы в квиллинге

Увидев ажурные поделки в технике квиллинг, меня никогда не покидало ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах - конечно же, это принцип фрактальности.


Посмотрев очередной мастер-класс по квилингу, не осталось даже сомнений в фрактальности квиллинга. Ведь для изготовления различных элементов для поделок из квиллинга используется специальная линейка с окружностями разного диаметра. При всей красоте и неповторимости изделий, это - невероятно простая техника.

Почти все основные элементы для поделок в квиллинге делаются из бумаги. Чтобы запастись бумагой для квиллинга бесплатно, проведите дома ревизию своих книжных полок. Наверняка, там вы обнаружите пару-тройку ярких глянцевых журналов.

Инструменты для квиллинга просты и недороги. Все что вам необходимо для выполнения любительских работ в стиле квиллинг, вы можете найти среди своих домашних канцелярских принадлежностей.

А история квиллинга начинается в 18 веке в Европе. В эпоху Ренессанса монахи из французских и итальянских монастырей с помощью квиллинга украшали книжные обложки и даже не подозревали о фрактальности изобретенной ими техники бумагокручения. Девушки из высшего общества даже проходили курс по квиллингу в специальных школах. Вот так эта техника начала распространяться по странам и континентам.

Этот мастер-класс видео квиллинг по изготовлению роскошного оперения можно даже назвать "фракталы своими руками". С помощью фракталов из бумаги получаются чудесный эксклюзивные открытки-валентики и много разных других интересных вещей. Ведь фантазия, как и природа неисчерпаема.


Ни для кого не секрет, что японцы по жизни сильно ограничены в пространстве, в связи с чем, им приходится всячески изощряться в эффективном его использовании. Такеши Миякава показывает, как это можно делать одновременно эффективно и эстетично. Его фрактальный шкаф подтверждение тому, что использование фракталов в дизайне - это не только дань моде, но и гармоничное конструкторское решение в условиях ограниченного пространства.

Этот пример использования фракталов в реальной жизни, применительно к дизайну мебели показал мне, что фракталы реальны не только на бумаге в математических формулах и компьютерных программах.

И, похоже, что принцип фрактальности природа использует повсеместно. Только нужно присмотреться к ней внимательней, и она проявит себя во всем своем великолепном изобилии и бесконечности бытия.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математики. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus - дроблёный, сломанный, разбитый) - это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тема : Фракталы - особые объекты живого и неживого мира

Хабаровск ТОГУ 2015

  • Оглавление
  • фрактал геометрический фрактальный графика
  • История фракталов
  • Классификация фракталов
  • Геометрические фракталы
  • Алгебраические фракталы
  • Применение фракталов
  • Фракталы и мир вокруг нас
  • Фрактальная графика
  • Применение фракталов
  • Естественные науки
  • Радиотехника
  • Информатика
  • Экономика и финансы

История фракталов

Очень часто мы встречаемся с особыми объектами, но мало кто знает, что это и есть фракталы. Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Они встречаются как в малых объектах, например, клеточная мембрана, и огромных, таких как Солнечная система и Галактика. В повседневной жизни мы можем увидеть фракталы на рисунке обоев, на ткани, заставке рабочего стола на компьютере, а в природе - это растения, морские животные, природные явления.

Учёные, с древних времен, зачарованы фракталами, программисты и специалисты в области компьютерной графики также любят эти объекты. Открытие фракталов стало революцией в человеческом восприятии мира и открытием новой эстетики искусства и науки.

Так что же такое фракталы? Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целом.

Термин фрактал был предложен в 1975г. Бенуа Мандельбротом для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождением фрактальной геометрии является выход его книги “The Fractal Geometry of Nature” в 1977г. Его работы базировались на трудах ученых Пуанкаре, Фату, Жюлиа, Кантора и Хаусдорфа, работавших в 1875 ? 1925 годах в этой же области. Но удалось объединить их работы в единую систему только в наше время.

Понятие «фрактал» образовано от латинского «fractus» ? состоящий из фрагментов. Одно из определений звучит так: «Фракталом называется структура, состоящая из частей, которые, в каком?то смысле подобны целому».

Бенуа Мандельброт в своих работах привел яркие примеры применения фракталов для объяснения некоторых природных явлений. Он уделил большое внимание интересному свойству, которым обладают многие фракталы. Дело в том, что часто фрактал можно разбить на сколь угодно малые части так, что каждая часть окажется просто уменьшенной копией целого. Иначе говоря, если мы будем смотреть на фрактал в микроскоп, то с удивлением увидим ту же самую картину, что и без микроскопа. Это свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Для современных учёных изучение фракталов? не просто новая область познания. Это открытие нового типа геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе, и в безграничной Вселенной. В настоящее время Мандельброт и другие учёные расширили область фрактальной геометрии так, что она может быть применима практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

Классификация фракталов

Существуют различные классификации фракталов.

Основной классификацией фракталов является разделение на геометрические и алгебраические.

Геометрические фракталы обладают точным самоподобием, а алгебраические - приближённым самоподобием.

Существует также разделение на природные и рукотворные фракталы.

К рукотворным относятся фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования -- то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Самыми простыми фракталами являются геометрические фракталы.

Геометрические фракталы

Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков данной ломаной (инициатора) заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается фрактальная кривая. Несмотря на кажущуюся сложность этой кривой, её форма определяется лишь формой генератора.

Наиболее известные геометрические фракталы: кривая Коха, кривая Минковского, кривая Леви, кривая дракона, салфетка и ковер Серпинского, пятиугольник Дюрера.

Построение некоторых геометрических фракталов

1). Кривая Коха.

Она была изобретена в 1904 году немецким математиком по имени Хельге фон Кох. Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

2). Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект. Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д. По теории конца этому процессу не будет, и в треугольнике не останется живого места, но и на части он не распадется - получится объект, состоящий из одних только дырок.

3). Дракон Хартера-Хэйтуэя.

Дракон Хартера, также известный как дракон Хартера-Хейтуэя, впервые исследовали физикии NASA ? Джон Хейтуэй, Вильям Хартер и Брюс Бенкс. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American».

Каждый из отрезков прямой на следующем шаге заменяется на два отрезка, образующих боковые стороны равнобедренного прямоугольного треугольника, для которого исходный отрезок являлся бы гипотенузой. В результате отрезок как бы прогибается под прямым углом. Направление прогиба чередуется. Первый отрезок прогибается вправо (по ходу движения слева направо), второй - влево, третий - опять вправо и т.д.

Примеры геометрических фракталов

Кривая Коха Салфетка Серпинского

Дракон Хартера-Хэйтуэя

Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят на основе алгебраических формул.

Алгебраические фракталы

Сложные (алгебраические) фракталы невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Наиболее известные алгебраические фракталы: множества Мандельброта и Жюлиа, бассейны Ньютона.

Алгебраические фракталы обладают приближенным самоподобием. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

АЛГЕБРАИЧЕСКИЕ ФРАКТАЛЫ

Приближения множества Мандельброта

Фракталы находят всё большее и большее применение в науке. Основная причина в том, что они описывают реальный мир лучше, чем традиционная физика и математика.

Применение фракталов

1). Теория хаоса: фракталы всегда ассоциируются со словом хаос. Теория хаоса определяется как учение о сложных нелинейных динамических системах. Хаос - это отсутствие предсказуемости. Он возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по-разному. Пример хаотичной динамической системы - погода. Примерами подобных систем являются турбулентные потоки, биологические популяции, общество и его подсистемы: экономические, политические и другие социальные системы. Одной из центральных концепций в этой теории является невозможность точного предсказания состояния системы. Теория хаоса сосредотачивает внимание не на беспорядке системы (наследственной непредсказуемости системы), а на унаследованном ей порядке (общем в поведении похожих систем). Таким образом, наука о хаосе - это система представлений о различных формах порядка, где случайность становится организующим принципом.

2). Экономика: анализ рынка ценных бумаг.

3). Астрофизика: описание процессов кластеризации галактик во Вселенной.

4). Геология: изучение шероховатости минералов;

5). Картография: изучение форм береговых линий; изучение разветвленной сети речных русел.

6). Механика жидкостей и газов, физика поверхностей:

- динамика и турбулентность сложных потоков.

- моделирование языков пламени;

7). Биология и медицина:

- моделирование популяций животных и миграции птиц;

- моделирование эпидемий;

- анализ строения кровеносной системы;

- рассмотрение сложных поверхностей клеточных мембран;

- описание процессов внутри организма, например, биения сердца.

8). Фрактальные антенны: использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка на зданиях внешних антенн. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, а затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

9). Сжатие изображений: достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

10). Компьютерная графика: компьютерная графика переживает сегодня период интенсивного развития. Она оказалась способна воссоздать на экране монитора бесконечное разнообразие фрактальных форм и пейзажей, погружая зрителя в удивительное виртуальное пространство. В настоящие время при помощи сравнительно простых алгоритмов появилась возможность создавать трёхмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в ещё более захватывающие картины. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами (например, фрактальные облака из 3D studio MAX, фрактальные горы в World Builder). Фрактальные модели сегодня широко применяют в компьютерных играх, создавая в них обстановку, которую уже трудно отличить от реальности.

Конец ХХ века ознаменовался не только открытием поразительно красивых и бесконечно разнообразных структур, названных фракталами, но и осознанием фрактального характера природы. Окружающий нас мир очень разнообразен, и его объекты не укладываются в жёсткие рамки евклидовых линий и поверхностей.

Фракталы и мир вокруг нас

« Красота всегда относительна...Не следует полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звёздами неодинаковы, ещё не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского учёного XVII в. Ричарда Бентли свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

Галилео Галилей сказал, что «великая книга Природы написана на языке геометрии». Сейчас с уверенностью можно утверждать, что она написана на языке фрактальной геометрии.

То, что мы наблюдаем в природе, часто интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Причудливые формы береговых линий и замысловатые изгибы рек, изломанные поверхности горных хребтов и очертания облаков, раскидистые ветви деревьев и коралловые рифы, робкое мерцание свечи и вспененные потоки горных рек - все это фракталы. Одни из них, типа облаков или бурных потоков, постоянно меняют свои очертания, другие, подобно деревьям или горным массивам, сохраняют свою структуру неизменной. Общим для всех типов фрактальных структур является их самоподобие - основное свойство, обеспечивающее выполнение во фракталах основного закона - закона единства в многообразии мироздания.

Фрактальными структурами также являются системы и органы человека. Так, например, кровеносные сосуды многократно разветвляются, т.е. имеют фрактальную природу. Электрическая активность сердца - фрактальный процесс. Кардиологи обнаружили, что спектральные характеристики сердечных сокращений подчиняются фрактальным законам, как землетрясения и экономические феномены. В тканях пищеварительного тракта одна волнистая поверхность встроена в другую. Легкие также представляют пример того, как большая площадь «втиснута» в маленькое пространство. В действительности, вся структура человеческого тела имеет фрактальную природу; это уже признано учеными. Принцип единого простого, задающего разнообразное сложное, заложен в геноме человека, когда одна клетка живого организма содержит информацию обо всем организме в целом.

Фрактальные структуры в природе

Приведем несколько образцов фото:

Как сказал биолог Джон Холдейн, “мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать”. Фракталы - не изобретения Мандельброта. Они существуют объективно. В природных формах и процессах, в науке и искусстве, которые этот мир отображают и познают. Именно “за изменение нашего взгляда на мир благодаря идеям фрактальной геометрии” Бенуа Мандельброту в 1993 году была присуждена почётная премия Вольфа в области физики.

В настоящее время большой популярностью пользуются фрактальные картины. Они производят совершенно фантастическое впечатление. Множество тонких линий, образующих одно целое, или же необычные элементы, сплетающиеся в единую картину. Вспышки яркого света и умеренные сглаженные линии. Фрактал кажется живым. Он горит, пылает, он завлекает, и Вы не можете отвести от него глаз, изучая даже самые крохотные и незначительные детали.

Фрактальная графика

Фрактальные картины в интерьере

Применение фракталов

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku (эта сеть является проектом создания распределённой самоорганизующейся одноранговой сети, способной обеспечить взаимодействие огромного количества узлов при минимальной нагрузке на центральный процессор и память) использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Экономика и финансы

А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности -- на рынке Форекс.

Всякий раз, рассматривая фракталы, задумываешься, как прекрасен реальный мир и мир математики, и о том, что математика действительно является языком, который способен описать практически всё, что существует во Вселенной.

Библиографический список

1. Мандельброт Б. Фрактальная геометрия природы. М.: “Институт компьютерных исследований”, 2002. 656 с.

2. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г. 140 с.

3. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. М.: “Мир”, 1993. - 176 с.

4. Тихоплав В.Ю., Тихоплав Т.С. Гармония хаоса, или фрактальная реальность. С.-Петербург: ИД “Весь”, 2003. 340 с.

5. Федер Е. Фракталы. М: “Мир”, 1991. 254 с.

6. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: “РХД”, 2001. 528 с.

Список сайтов о фракталах

1. http://www.fractals.nsu.ru.

2. http://www.fractalworld.xaoc.ru.

3. http://www.multifractal.narod.ru.

4. http://algolist.manual.ru.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа , добавлен 12.05.2010

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа , добавлен 26.05.2006

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа , добавлен 22.03.2014

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат , добавлен 24.05.2005

    Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.