История возникновения и развития теории графов. Теория графов: основные понятия и задачи

История возникновения и развития теории графов 1736 г. , Леонард Эйлер, задача о кенигсбергских мостах (Г. Кенигсберг расположен на берегах реки Прегель, в городе 7 мостов. Можно ли совершить прогулку, чтобы выйти из дома и вернуться обратно, пройдя по каждому мосту только один раз?) o Середина XIX в. , Г. Кирхгоф описание с помощью графов электрических цепей, А. Кэли химических схем o Как математическая дисциплина сформировалась в середине 30 -х гг. XX в. (1936 г, выход в свет o

Области применения теории графов o o o Анализ и синтез электрических и пр. цепей и систем, сетевое планирование и управление, исследование операций, выбор оптимальных маршрутов и потоков в сетях, моделирование жизнедеятельности организмов, исследование случайных процессов и др. Практические проблемы, решение которых сводится к рассмотрению совокупности объектов и связей между ними. Например, карта автомобильных дорог – как связь между населенными пунктами, различные связи и отношения между людьми, событиями, состояниями и вообще между любыми объектами Многочисленные головоломки и игры на

o Головоломки, в которых требуется обрисовать некоторую фигуру, не прерывая и не повторяя линии, например или Сабли Магомета

Основные определения o o o Граф – это объединение конечного числа точек и линий, которыми соединены некоторые из точек. Точки называют вершинами графа, а линии, их соединяющие – ребрами Число ребер, выходящих из вершины, называется степенью этой вершины

Примеры графов o o Каркас любого многогранника в пространстве Схема линий в метро Структурные формулы молекул Генеалогическое дерево

Примеры задач, решаемых с помощью графов 1. Путешественники o В бюро по туризму составляют маршрут для путешественников, желающих проехать из города А в город В, осмотрев по пути все достопримечательности, расположенные в городах C, D, E, F, G, H, K, M. Составить маршрут поездки нужно таким образом, чтобы туристы посетили все указанные города и побывали в каждом из них ровно по одному разу.

o По условию задачи путешествие должно начаться в пункте А и закончится в пункте В. Заметим, что в города D и F ведут всего две дороги. Значит по этим дорогам путешественники обязательно проедут. Отметим их жирной линией. Тем самым определен участок маршрута CDEFG. Значит по дорогам AE, AG, EM туристы проезжать не будут (иначе они два раза посетят пункт E). Перечеркнем эти дороги. Отметим жирной линией участок AC, поскольку из A осталась только эта дорога. Перечеркнем CM (в С мы уже были). Через М остались неперечеркнуты две дороги: MH и MB, значит по ним туристы и поедут. Отметим их жирной линией. Осталась единственная возможность проехать из G в H

o Таким образом, мы нашли нужный маршрут. В этом нам помогла схема расположения городов и дорог, которая является на самом деле графом с 10 вершинами и 17 ребрами. Вершины A, D, F имеют степень два, вершины C и K – степень три, H, M, B – вершины четвертой степени, а G и E – пятой.

2. Знакомства o Может ли так случится, что в компании, состоящей из 8 человек, каждый знаком ровно с двумя другими людьми?

2. Знакомства (решение) o o Сопоставим участникам компании вершины графа, соединим две вершины ребром, если соответствующие два человека знакомы между собой. Чтобы каждый был знаком ровно с двумя другими людьми, любая вершина графа должна иметь степень 2. Примеры таких графов: Раз такие графы существуют, значит ситуация, описанная в задаче возможна.

3. Шахматный турнир o Пусть в турнире должны участвовать n шахматистов, все должны сыграть друг с другом ровно по одной партии. Сопоставим каждому участнику вершину графа, а каждой сыгранной парии ребро графа, соединяющее соответствующие вершины

Полный граф o o o До начала турнира граф состоит только из точек, у него нет ни одного ребра. Такие графы называются нуль-графами По окончании турнира каждый участник сыграл с любым другим и каждая пара вершина соединена между собой ребром. Такой граф называется полным. В полном графе с n вершинами степень каждой вершины равна (n-1) Неполный граф можно превратить в полный, добавив недостающие ребра. На рис. толстой линией изображен граф с 5 вершинами, который не является полным. Добавив

Ориентированный граф o o o Часто связи между объектами характеризуются определенной ориентацией (схема дорог с односторонним движением, подчиненность или старшинство в отношениях между людьми, результаты встреч между командами в спортивных состязаниях) Изображенный нами граф шахматного турнира не дает информации о том, кто же выиграл каждую партию. Можно на каждом ребре ставить стрелочку от вершины А к вершине В, если шахматист А проиграл шахматисту В, т. е. ориентировать ребра, указав на них направление Граф, на котором указано направление каждого ребра, называется

o Граф, содержащий как ориентированные, так и неориентированные ребра, называется смешанным (например, граф шахматного турнира, в котором некоторые партии окончились вничью. Ничейному результату сопоставим ребро без стрелочки)

Маршрут графа o o o Маршрут длины m произвольного графа – это такая последовательность m ребер (не обязательно различных), в которой граничные вершины двух соседних ребер совпадают. Длина маршрута – количество ребер (если по ребру проходим 2 раза, то и считаем это ребро 2 раза) Маршрут замкнутый, если его начальная и конечная вершины совпадают Цепь - незамкнутый маршрут, в котором все ребра различны Простая цепь - цепь, в которой все вершины различны (пример – задача 1. (О путешественниках)

Циклы, связные графы o o o Цикл - замкнутый маршрут, в котором все ребра различны. Простой цикл - цикл, в котором все вершины различны (пример – задача о знакомствах. Первый граф содержит один простой цикл, второй и третий – по два простых цикла) Граф называют связным, если существует маршрут из любой его вершины в любую другую, и несвязным в противном случае (пример – задача о знакомствах, первый граф – связный, каждый человек может познакомится с остальными через своих знакомых, второй и третий – несвязные, в компании так и останутся незнакомые люди)

o o o o B-D-A-C-D-A – незамкнутый маршрут A-C-D-A-B-D-A - замкнутый маршрут A-C-D-E-F-D-B – цепь A-B-G-H – простая цепь A-C-D-E-F-D-Aцикл D-E-F-D – простой цикл Посчитайте длину этих маршрутов Определите к какому типу относятся маршруты A-B-D-F-E-D-C-A; A-D-E; D-E-F-D; A-C-D-B-A;

Деревья o o Дерево – связный граф, не имеющий циклов Генеалогическое дерево, файловая система и пр.

Задача 4. Деление на части o Разрезаем лист бумаги на 3 части. Некоторые из полученных листиков снова разрезаем на 3 части. Некоторые из разрезанных листиков – еще раз на три части и т. д. Сколько получится отдельных листиков, если сделано k разрезаний?

Задача 4. Деление на части (решение) o o Листы бумаги вершины графа. Закрашенные вершины соответствуют разрезанным листикам, незакрашенные – неразрезанным. При разрезании одного листика число листиков увеличивается на 2. Если всего было разрезано k листиков, то число листиков увеличится на 2 k. Первоначально у нас был один лист. , поэтому после k разрезаний получится (2 k+1) листик. На графе проиллюстрирован случай, когда k=6. (2 k+1) =13

Теорема о сумме степеней вершин графа o o Пусть граф Г имеет N вершин и M рёбер. Каждая i-ая вершина имеет степень di Поскольку каждое ребро соединяет две вершины, оно добавляет двойку к сумме степеней вершин графа, поэтому сумма степеней вершин равна удвоенному количеству ребер

Задача 5. Количество дорог o Может ли в государстве, в котором из каждого города выходят ровно 3 дороги быть ровно 100 дорог?

Задача 5. Количество дорог (решение) o Предположим, такая ситуация возможна. В государстве N городов, из каждого города выходят 3 дороги. Значит мы имеем граф с N вершинами, каждая из которых имеет степень 3. Следовательно, сумма степеней вершин равна 3 N, а число ребер – 3 N/2. Это число по условию равно 100. Т. е. 3 N/2=100 или 3 N=200. Такого натурального числа не существует. Значит в этом государстве не может быть 100 дорог.

Самостоятельно o В некотором царстве царь издал указ: построить 7 городов и соединить их дорогами так, чтобы из каждого города выходило по 3 дороги. Выполним ли такой приказ? Станет ли он выполним, если из каждого города будут выходить 4 дороги?

Задача 6. о кенигсбергских мостах o Г. Кенигсберг расположен на берегах реки Прегель, в городе 7 мостов. Можно ли совершить прогулку, чтобы выйти из дома и вернуться обратно, пройдя по каждому мосту только один раз?

Решение задачи о кенигсбергских мостах o o o Обозначим части города A, B, C, D. Это будут вершины графа. Мосты, соединяющие части города – ребра графа. Эйлер показал, что задача не имеет решения, т. е. не существует цикла, проходящего по всем рёбрам точно по одному разу. Ведь если бы такой цикл существовал, то в каждой вершине графа было бы столько входящих в неё рёбер, сколько и выходящих из неё, т. е. в каждой вершине графа было бы чётное число рёбер (войдя в вершину по одному ребру, мы должны выйти из нее по другому ребру). Однако это условие, очевидно, не выполнено для графа, представляющего карту Кёнигсберга. Убедитесь в этом, определив степень каждой вершины графа

Эйлеров граф o o Изложив решение задачи о кёнигсбергских мостах, Эйлер в своей работе перешёл к следующей общей проблеме теории графов: на каких графах можно найти цикл, содержащий все рёбра графа, причём каждое ребро в точности по одному разу? Такой цикл называется эйлеровой линией или эйлеровым циклом, а граф, обладающий эйлеровой линией, – эйлеровым графом. Итак, эйлеров граф можно обойти полностью, проходя по каждому ребру только один раз. Поэтому эйлеровы графы можно построить, не отрывая карандаша от бумаги и не проводя одну и ту же линию дважды.

Необходимое и достаточное условие существования эйлерового графа o o o Для того, чтобы граф имел эйлерову линию, он должен быть связным. Как и в задаче о кёнигсбергских мостах, ясно, что каждая эйлерова линия должна входить в каждую вершину и выходить из неё одно и то же число раз, т. е. степени всех вершин графа должны быть чётными. Значит, чтобы граф был эйлеровым, необходимы два условия: связность графа и чётность степеней всех его вершин. Эйлер доказал, что эти условия являются также и достаточными: связный граф, степени всех вершин которого чётные, обладает эйлеровой линией.

Самостоятельно o Определите, являются ли эти графы эйлеровыми? (можно ли обвести их одним росчерком пера, не прерывая и не повторяя линии, и вернуться в ту точку, с которой начали) Если да, найдите в них эйлеровы циклы (покажите, как это сделать)

Эйлеров путь o o Эйлеров путь – это путь, когда все рёбра проходятся по одному разу, но без возвращения в исходную точку. Если граф не обладает эйлеровым циклом, то можно поставить задачу об отыскании эйлерова пути

Достаточное условие существования эйлерового пути o o Если граф Г обладает эйлеровым путём с концами А и В (А не совпадает с В), то граф Г связный и А и В – единственные нечётные его вершины. Действительно, связность графа следует из определения эйлерова пути. Если путь начинается в А, а заканчивается в другой вершине В, то и А и В – нечётные, даже если путь неоднократно проходил через А и В. В любую другую вершину графа путь должен был привести и вывести из неё, т. е. все остальные вершины должны быть чётными.

Необходимое условие существования эйлерового пути o o Верно и обратное: если граф Г связный, а А и В – единственные нечётные вершины его, то граф Г обладает эйлеровым путём с концами А и В. Вершины А и В могут быть соединены ребром в графе, а могут быть и не соединены. В любом случае добавим либо дополнительное, либо новое ребро (А, В), тогда все вершины его станут чётными. Новый граф, согласно приведённому выше конструктивному доказательству достаточного условия существования эйлерового графа, обладает эйлеровым циклом, который можно начать по любому ребру. Начнём эйлеров цикл из вершины А по добавленному ребру (А, В) и кончим его в вершине А. Если удалить теперь

Применение теоремы об эйлеровом пути o o Таким образом, всякую замкнутую фигуру, имеющую в точности две нечётные вершины, можно расчертить одним росчерком без повторений, начав в одной из нечётных вершин, а закончив в другой. В соответствии с этой теоремой через кёнигсбергские мосты не существует эйлерова пути, так как хотя соответствующий граф связный, но степени всех его вершин нечётные, а должно быть только две вершины нечётными, а остальные чётными, чтобы существовал эйлеров путь

Самостоятельно o В соответствии с теоремой об эйлеровом пути определите: существует ли эйлеров путь в графах? (можно ли расчертить одним росчерком без повторений, начав в одной из вершин, а кончив в другой). Если существует, найдите его (покажите, как это сделать)

Задача 7. 2. О кенигсбергских мостах для воображаемого города (самостоятельно) o На рисунке план воображаемого города, который Эйлер использовал для иллюстрации в своей работе. Начертите граф для плана Эйлера и определите, существует ли в нём эйлеров цикл? А эйлеров путь? Если да – то найдите его

Задача 8. Зоопарк (самостоятельно) o На рисунке схема зоопарка (вершины графа – вход, выход, перекрёстки, повороты, тупики, рёбра-дорожки, вдоль которых расположены клетки). Найдите маршрут, по которому экскурсовод мог бы провести посетителей, показав им всех зверей и не проходя более одного раза ни одного участка пути, т. е. найдите эйлеров путь.

Тео́рия гра́фов - раздел дискретной математики , изучающий свойства графов . В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами. В строгом определении графом называется такая пара множеств. G=(V,E), где V есть подмножество любого счётного множества, а E - подмножество V×V.

История возникновения теории графов
Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей впоследствии одной из классических задач теории графов.
Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок. Вот пересказ отрывка из письма Эйлера от 13 марта 1736 году: ” Мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто 7 мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не смог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел лёгкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может“. Кенигсбергские мосты схематически можно изобразить так:
Правило Эйлера:

1. В графе, не имеющем вершин нечетных степеней, существует обход всех рёбер (причем каждое ребро проходится в точности один раз) с началом в любой вершине графа.
2. В графе, имеющем две и только две вершины с нечетными степенями, существует обход с началом в одной вершине с нечетной степенью и концом в другой.
3. В графе, имеющим более двух вершин с нечетной степенью, такого обхода не существует.


Существует еще один вид задач, связанных с путешествиями вдоль графов. Речь идёт о задачах, в которых требуется отыскать путь, проходящий через все вершины, причем не более одного раза через каждую. Цикл, проходящий через каждую вершину один и только один раз, носит название гамильтоновой линии(в честь Уильяма Роуэна Гамильтона, знаменитого ирландского математика прошлого века, который первым начал изучать такие линии). К сожалению, пока еще не найден общий критерий, с помощью которого можно было бы решить, является ли данный граф гамильтоновым, и если да, то найти на нём все гамильтоновы линии.
Сформули­рованная в середине 19 в. проблема четырех красок также выглядит как развле­кательная задача, однако попытки ее решения привели к появлению некоторых исследований графов, имеющих теоретическое и прикладное значение. Проблема четырех красок формулируется так: ”Можно ли область любой плоской карты раскрасить четырьмя цветами так, чтобы любые две соседние области были раскрашены в различные цвета?”. Гипотеза о том, что ответ утвердительный, была сформулирована в середине 19в. В 1890 году было доказано более слабое утверждение, а именно, что любая плоская карта раскрашивается в пять цветов. Сопоставляя любой плоской карте двойственный ей плоский гр аф, получают эквивалентную формулировку задачи в терминах графов: Верно ли, что хроматическое число любого плоского графа меньше либо равно четырёх? Многочисленные попытки решения задачи оказали влияние на развитие ряда направлений теории графов. В 1976 году анонсировано положительное решение задачи с использованием ЭВМ.

Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей впоследствии одной из классических задач теории графов.

Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок. Вот пересказ отрывка из письма Эйлера от 13 марта 1736 году: ” Мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто 7 мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не смог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел лёгкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может“. Кенигсбергские мосты схематически можно изобразить так:



Правило Эйлера:

1. В графе, не имеющем вершин нечетных степеней, существует обход всех рёбер (причем каждое ребро проходится в точности один раз) с началом в любой вершине графа.

2. В графе, имеющем две и только две вершины с нечетными степенями, существует обход с началом в одной вершине с нечетной степенью и концом в другой.

3. В графе, имеющим более двух вершин с нечетной степенью, такого обхода не существует.

Существует еще один вид задач, связанных с путешествиями вдоль графов. Речь идёт о задачах, в которых требуется отыскать путь, проходящий через все вершины, причем не более одного раза через каждую. Цикл, проходящий через каждую вершину один и только один раз, носит название гамильтоновой линии(в честь Уильяма Роуэна Гамильтона, знаменитого ирландского математика прошлого века, который первым начал изучать такие линии). К сожалению, пока еще не найден общий критерий, с помощью которого можно было бы решить, является ли данный граф гамильтоновым, и если да, то найти на нём все гамильтоновы линии.

Сформулированная в середине 19 в. проблема четырех красок также выглядит как развлекательная задача, однако попытки ее решения привели к появлению некоторых исследований графов, имеющих теоретическое и прикладное значение. Проблема четырех красок формулируется так: ”Можно ли область любой плоской карты раскрасить четырьмя цветами так, чтобы любые две соседние области были раскрашены в различные цвета?”. Гипотеза о том, что ответ утвердительный, была сформулирована в середине 19в. В 1890 году было доказано более слабое утверждение, а именно, что любая плоская карта раскрашивается в пять цветов. Сопоставляя любой плоской карте двойственный ей плоский граф, получают эквивалентную формулировку задачи в терминах графов: Верно ли, что хроматическое число любого плоского графа меньше либо равно четырёх? Многочисленные попытки решения задачи оказали влияние на развитие ряда направлений теории графов. В 1976 году анонсировано положительное решение задачи с использованием ЭВМ.

Другая старая топологическая задача, которая особенно долго не поддавалась решению и будоражила умы любителей головоломок, известна как “задача об электро -, газо - и водоснабжении”. В 1917 году Генри Э.Дьюдени дал ей такую формулировку. В каждый из трёх домов, изображенных на рисунке, необходимо провести газ, свет и воду.

Тео́рия гра́фов. 1

История возникновения теории графов. 1

Правило Эйлера. 1

Литература

1. Белов Теория Графов, Москва, «Наука», 1968.

2. Новые педагогические и информационные технологии Е.С.Полат, Москва, «Akademia» 1999 г.

3. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. – М.: Энергоатомиздат , 1988.

4. Кук Д., Бейз Г. Компьютерная математика. – М.: Наука , 1990.

5. Нефедов В.Н., Осипова В.А. Курс дискретной математики. – М.: Издательство МАИ , 1992.

6. Оре О. Теория графов. – М.: Наука , 1980.

7. Исмагилов Р.С., Калинкин А.В. Матеpиалы к пpактическим занятиям по куpсу: Дискpетная математика

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 2

Подготовил

Легкоконец Владислав, ученик 10А класса

Практическое применение Теории Графов

Руководитель

Л.И. Носкова, учитель математики

ст.Брюховецкая

2011 г.

1.Введение………………………………………………………………………….………….3

2.История возникновения теории графов………………………………………….………..4

3.Основные определения и теоремы теории графов……………………………….………6

4.Задачи,решаемые при помощи графов……………………………..……………………..8

4.1 Знаменитые задачи………………………………….………………………...8

4.2 Несколько интересных задач………………………………….……………..9

5.Применение графов в различных областях жизни людей……………………………...11

6.Решение задач……………………………………………………………………………...12

7. Заключение………………….…………………………………………………………….13

8. Список литературы………….……………………………………………………………14

9.Приложение…………………………………………………………………….…………15

Введение

Родившись при решении головоломок и занимательных игр, теория графов стала в настоящее время простым, доступным и мощным средством решения вопросов, относящихся к широкому кругу проблем. Графы буквально вездесущи. В виде графов можно, например, интерпретировать схемы дорог и электрические цепи, географические карты и молекулы химических соединений, связи между людьми и группами людей. За последние четыре десятилетия теория графов превратилась в один из наиболее бурно развивающихся разделов математики. Это вызвано запросами стремительно расширяющейся области приложений. Применяется при проектировании интегральных схем и схем управления, при исследовании автоматов, логических цепей, блок- схем программ, в экономике и статистике, химии и биологии, в теории расписаний. Поэтому актуальность темы обусловлена с одной стороны популярностью графов и связанных с ними методов исследований, а с другой, не разработанная, целостная система ее реализации.

Решение многих жизненных задач требует длинных вычислений, а иногда и эти вычисления не приносят успеха. В этом и состоит проблема исследования . Возникает вопрос: нельзя ли для их решения найти простое, рациональное, короткое и изящное решение. Упрощается ли решение задач, если использовать графы? Это определило тему моего исследования : «Практическое применение теории графов»

Целью исследования было с помощью графов научиться быстро решать практические задачи.

Гипотеза исследования. Метод графов очень важен и широко применяется в различных областях науки и жизнедеятельности человека.

Задачи исследования:

1.Изучить литературу и ресурсы сети Интернет по данной проблеме.

2.Проверить эффективность метода графов при решении практических задач.

3. Сделать вывод.

Практическая значимость исследования заключается в том, что результаты несомненно вызовут интерес у многих людей. Разве не пытался кто-то из вас построить генеалогическое дерево своей семьи? А как это сделать грамотно? Руководителю транспортного предприятия наверняка приходится решать проблему более выгодного использования транспорта при перевозке грузов с места назначения в несколько населенных пунктов. Каждый школьник сталкивался с логическими задачами на переливание. Оказывается они решаются при помощи графов легко.

В работе используются следующие методы: наблюдение, поиск, отбор, анализ.

История возникновения теории графов

Родоначальником теории графов принято считать математика Леонарда Эйлера (1707-1783). Историю возникновения этой теории можно проследить по переписке великого ученого. Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года.

"Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов.

[Приложение рис.1] Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может. Кенигсбергские же мосты расположены так, что их можно представить на следующем рисунке [Приложение рис.2] , на котором A обозначает остров, а B ,C иD – части континента, отделенные друг от друга рукавами реки

По поводу обнаруженного им способа решать задачи подобного рода Эйлер писал:

"Это решение по своему характеру, по-видимому, имеет мало отношения к математике, и мне непонятно, почему следует скорее от математика ожидать этого решения, нежели от какого-нибудь другого человека, ибо это решение подкрепляется одним только рассуждением, и нет необходимости привлекать для нахождения этого решения какие-либо законы, свойственные математике. Итак, я не знаю, каким образом получается, что вопросы, имеющие совсем мало отношения к математике, скорее разрешается математиками, чем другими".

Так можно ли обойти Кенигсбергские мосты, проходя только один раз через каждый из этих мостов? Чтобы найти ответ, продолжим письмо Эйлера к Маринони:

"Вопрос состоит в том, чтобы определить, можно ли обойти все эти семь мостов, проходя через каждый только однажды, или нельзя. Мое правило приводит к следующему решению этого вопроса. Прежде всего, нужно смотреть, сколько есть участков, разделенных водой, – таких, у которых нет другого перехода с одного на другой, кроме как через мост. В данном примере таких участков четыре – A , B , C , D . Далее нужно различать, является ли число мостов, ведущих к этим отдельным участкам, четным или нечетным. Так, в нашем случае к участку A ведут пять мостов, а к остальным – по три моста, т. е. Число мостов, ведущих к отдельным участкам, нечетно, а этого одного уже достаточно для решения задачи. Когда это определено, применяем следующее правило: если бы число мостов, ведущих к каждому отдельному участку, было четным, то тогда обход, о котором идет речь, был бы возможен, и в то же время можно было бы начать этот обход с любого участка. Если же из этих чисел два были бы нечетные, ибо только одно быть нечетным не может, то и тогда мог бы совершиться переход, как это предписано, но только начало обхода непременно должно быть взято от одного из тех двух участков, к которым ведет нечетное число мостов. Если бы, наконец, было больше двух участков, к которым ведет нечетное число мостов, то тогда такое движение вообще невозможно… если можно было привести здесь другие, более серьезные задачи, этот метод мог бы принести еще большую пользу и им не следовало бы пренебрегать".

Основные определения и теоремы теории графов

Теория графов – дисциплина математическая, созданная усилиями математиков, поэтому ее изложение включает в себя и необходимые строгие определения. Итак, приступим к организованному введению основных понятий этой теории.

    Определение 1. Графомназывается совокупность конечного числа точек, называемых вершинами графа, и попарно соединяющих некоторые из этих вершин линий, называемых ребрамиили дугами графа.

Это определение можно сформулировать иначе: графомназывается непустое множество точек (вершин) и отрезков (ребер), оба конца которых принадлежат заданному множеству точек

В дальнейшем вершины графа мы будем обозначать латинскими буквами A , B , C , D . Иногда граф в целом будем обозначать одной заглавной буквой.

Определение 2. Вершины графа, которые не принадлежат ни одному ребру, называются изолированными.

Определение 3. Граф, состоящий только из изолированных вершин, называется нуль- графом.

Обозначение: O "– граф с вершинами, не имеющий ребер

Определение 4. Граф, в котором каждая пара вершин соединена ребром, называется полным.

Обозначение: U "граф, состоящий из n вершин и ребер, соединяющих всевозможные пары этих вершин. Такой граф можно представить как n –угольник, в котором проведены все диагонали

Определение 5. Степеньювершиныназывается число ребер, которым принадлежит вершина.

Определение 6. Граф, степени всех k вершин которого одинаковы, называется однороднымграфомстепениk .

Определение 7. Дополнениемданногографаназывается граф, состоящий из всех ребер и их концов, которые необходимо добавить к исходному графу, чтобы получить полный граф.

Определение 8. Граф, который можно представить на плоскости в таком виде, когда его ребра пересекаются только в вершинах, называется плоским.

Определение 9. Многоугольник плоского графа, не содержащий внутри себя никаких вершин или ребер графа, называют его гранью.

Понятия плоского графа и грани графа применяется при решении задач на "правильное" раскрашивание различных карт.

Определение 10. Путемот A доX называется последовательность ребер, ведущая от A к X , такая, что каждые два соседних ребра имеют общую вершину, и никакое ребро не встречается более одного раза.

Определение 11. Цикломназывается путь, в котором совпадают начальная и конечная точка.

Определение 12. Простым цикломназывается цикл, не проходящий ни через одну из вершин графа более одного раза.

Определение 13. Длиной пути, проложенного на цикле, называется число ребер этого пути.

Определение 14. Две вершины A и B в графе называются связными(несвязными), если в нем существует (не существует) путь, ведущий из A в B .

Определение 15. Граф называется связным, если каждые две его вершины связны; если же в графе найдется хотя бы одна пара несвязных вершин, то граф называется несвязным.

Определение 16. Деревомназывается связный граф, не содержащий циклов.

Трехмерной моделью графа-дерева служит, например, настоящее дерево с его замысловато разветвленной кроной; река и ее притоки также образуют дерево, но уже плоское – на поверхности земли.

Определение 17. Несвязный граф, состоящий исключительно из деревьев, называется лесом.

Определение 18. Дерево, все n вершин которого имеют номера от 1 до n , называют деревом с перенумерованными вершинами.

Итак, мы рассмотрели основные определения теории графов, без которых было бы невозможно доказательство теорем, а, следовательно и решение задач.

Задачи решаемые при помощи графов

Знаменитые задачи

Задача коммивояжера

Задача коммивояжера является одной из знаменитых задач теории комбинаторики. Она была поставлена в 1934 году, и об неё обламывали зубы лучшие математики.

Постановка задачи следующая.
Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3..n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Метод решения задачи коммивояжера

Жадный алгоритм “иди в ближайший (в который еще не входил) город”.
“Жадным” этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность.
Рассмотрим для примера сеть на рисунке [приложение рис.3] , представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм “иди в ближайший город” выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур.

Задача о Кенигсбергских мостах.

Задача формулируется следующим образом.
Город Кенигсберг расположен на берегах реки Прегель и двух островах. Различные части города были соединены семью мостами. По воскресеньям горожане совершали прогулки по городу. Вопрос: можно ли совершить прогулку таким образом, чтобы, выйдя из дома, вернуться обратно, пройдя в точности один раз по каждому мосту.
Мосты через реку Прегель расположены как на рисунке
[приложение Рис.1].

Рассмотрим граф, соответствующий схеме мостов [приложение рис.2].

Чтобы ответить на вопрос задачи, достаточно выяснить, является ли граф эйлеровым. (Хотя бы из одной вершины должно выходить четное число мостов). Нельзя, прогуливаясь по городу, пройти по одному разу все мосты и вернуться обратно.

Несколько интересных задач

1. "Маршруты".

Задача 1

Как вы помните, охотник за мертвыми душами Чичиков побывал у известных помещиков по одному разу у каждого. Он посещал их в следующем порядке: Манилова, Коробочку, Ноздрева, Собакевича, Плюшкина, Тентетникова, генерала Бетрищева, Петуха, Констанжолго, полковника Кошкарева. Найдена схема, на которой Чичиков набросал взаимное расположение имений и проселочных дорог, соединяющих их. Установите, какое имение кому принадлежит, если ни одной из дорог Чичиков не проезжал более одного раза [приложение рис.4].

Решение :

По схеме дорог видно, что путешествие Чичиков начал с имения Е, а окончил имением О. Замечаем, что в имения В и С ведут только две дороги, поэтому по этим дорогам Чичиков должен был проехать. Отметим их жирной линией. Определены участки маршрута, проходящие через А: АС и АВ. По дорогам АЕ, АК и АМ Чичиков не ездил. Перечеркнем их. Отметим жирной линией ЕD ; перечеркнем DK . Перечеркнем МО и МН; отметим жирной линией MF ; перечеркнем FO ; отметим жирной линией FH , НК и КО. Найдем единственно возможный при данном условии маршрут. И получаем: имение Е – принадлежит Манилову, D - Коробочке, С – Ноздреву, А – Собакевичу, В – Плюшкину, М – Тентетникову, F - Бетрищеву, Н – Петуху, К – Констанжолго, О – Кошкареву [приложение рис.5] .

Задача 2

На рисунке изображена схема местности [приложение рис.6].

Передвигаться можно только в направлении стрелок. В каждом пункте можно бывать не более одного раза. Сколькими способами можно попасть из пункта 1 в пункт 9? Какой маршрут самый короткий и какой - самый длинный.

Решение :

Последовательно "расслаиваем" схему в дерево, начиная с вершины 1[приложение рис.7] . Получим дерево. Число возможных способов попадания из 1 в 9 равно числу "висячих" вершин дерева (их 14). Очевидно, кратчайший путь-1-5-9; самый длинный - 1-2-3-6-5-7-8-9.

2 "Группы, знакомства"

Задача 1

Участники музыкального фестиваля, познакомившись, обменялись конвертами с адресами. Докажите, что:

а) всего было передано четное число конвертов;

б) число участников, обменявшихся конвертами нечетное число раз, четно.

Решение: Пусть участники фестиваля А 1 , А 2 , А 3 . . . , А n – вершины графа, а ребра соединяют пары вершин, изображающих ребят, обменявшихся конвертами [Приложение рис.8]

Решение:

а) степень каждой вершины А i показывает число конвертов, которое передал участник А i своим знакомым. Общее число переданных конвертов N равно сумме степеней всех вершин графа N = степ. А 1 + степ. А 2 + + . . . + степ. А n -1 + степ. А n , N =2p , где p – число ребер графа, т.е. N – четное. Следовательно, было передано четное число конвертов;

б) в равенстве N = степ. А 1 + степ. А 2 + + . . . + степ. А n -1 + степ. А n сумма нечетных слагаемых должна быть четной, а это может быть только в том случае, если число нечетных слагаемых четно. А это означает, что число участников, обменявшихся конвертами нечетное число раз, четное.

Задача 2

Однажды Андрей, Борис, Володя, Даша и Галя договорились вечером пойти в кино. Выбор кинотеатра и сеанса они решили согласовать по телефону. Было также решено, что если с кем-то созвониться не удастся, то поход в кино отменяется. Вечером у кинотеатра собрались не все, и поэтому посещение кино сорвалось. На следующий день стали выяснять, кто кому звонил. Оказалось, что Андрей звонил Борису и Володе, Володя звонил Борису и Даше, Борис звонил Андрею и Даше, Даша звонила Андрею и Володе, а Галя звонила Андрею, Володе и Борису. Кто не сумел созвониться и поэтому не пришёл на встречу?

Решение:

Нарисуем пять точек и обозначим их буквами А, Б, В, Г, Д. Это первые буквы имён. Соединим те точки, которые соответствуют именам созвонившихся ребят.

[ приложение рис.9]

Из рисунка видно, что каждый из ребят – Андрей, Борис и Володя - созвонились со всеми остальными. Поэтому эти ребята и пришли к кинотеатру. А Галя и Даша не сумели созвониться между собой (точки Г и Д не соединены отрезком) и поэтому в соответствии с договорённостью в кино не пришли.

Применение графов в различных областях жизни людей

Кроме приведенных примеров, графы широко используются в строительстве, электротехнике, менеджменте, логистике, географии, машиностроении, социологии, программировании, автоматизации технологических процессов и производств, психологии, рекламе. Итак, из всего вышесказанного неопровержимо следует практическая ценность теории графов, доказательство которой и являлось целью данного исследования.

В любой области науки и техники встречаешься с графами. Графы - это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи, различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Многие математические факты удобно формулировать на языке графов. Теория графов является частью многих наук. Теория графов - одна из самых красивых и наглядных математических теорий. В последнее время теория графов находит всё больше применений и в прикладных вопросах. Возникла даже компьютерная химия - сравнительно молодая область химии, основанная на применении теории графов.

Молекулярные графы , применяемые в стереохимии и структурной топологии, химии кластеров, полимеров и др., представляют собой неориентированные графы, отображающие строение молекул [приложение рис.10] . Вершины и ребра этих графов отвечают соответственным атомам и химическим связям между ними.

Молекулярные графы и деревья: [приложение рис.10] а, б - мультиграфы соотв. этилена и формальдегида; в-мол. изомеров пентана (деревья 4, 5 изоморфны дереву 2).

В стереохимии организмов наиболее. часто используют молекулярные деревья -основные деревья молекулярных графов, которые содержат только все вершины, соответствующие атомам С. Составление наборов мол. деревьев и установление их изоморфизма позволяют определять мол. структуры и находить полное число изомеров алканов, алкенов и алкинов

Белковые сети

Белковые сети - группы физически взаимодействующих белков, которые функционируют в клетке совместно и скоординированно, контролируя взаимосвязанные процессы, происходящие в организме [приложение рис. 11].

Граф иерархической системы называется деревом. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.

Обычно у дерева, представляющего иерархическую систему, выделяется одна главная вершина, которая называется корнем дерева. Каждая вершина дерева (кроме корня) имеет только одного предка – обозначенный ею объект входит в один класс верхнего уровня. Любая вершина дерева может порождать несколько потомков – вершин, соответствующих классам нижнего уровня.

Для каждой пары вершин дерева существует единственный путь, их соединяющий. Этим свойством пользуются при нахождении всех предков, например, по мужской линии, любого человека, чья родословная представлена в виде генеалогического дерева, которое является «деревом» и в смысле теории графов.

Пример генеалогического дерева моей семьи [приложение рис.12].

Еще один пример. На рисунке показано библейское генеалогическое дерево [приложение рис.13].

Решение задач

1.Транспортная задача . Пусть в городе Краснодаре находится база с сырьём, которое нужно развести по городам Крымск, Темрюк, Славянск-на-Кубани и Тимашевск одним заездом, затратив при этом как можно меньше времени и топлива и вернувшись обратно в Краснодар.

Решение:

Для начала составим граф всех возможных путей проезда [приложение рис.14] , учитывая реальные дороги между данными населенными пунктами и расстояние между ними. Для решения этой задачи нам потребуется составить еще один граф, древовидный [приложение рис.15] .

Для удобства решения обозначаем города цифрами: Краснодар – 1, Крымск – 2, Темрюк – 3, Славянск – 4, Тимашевск – 5.

В результате вышло 24 решения, но нам нужны только кратчайшие пути. Из всех решений удовлетворяют только два, это 350 км.

Подобно этому можно и, я думаю, нужно рассчитывать реальные перевозки из одного населенного пункта в другие.

    Логическая задача на переливание. В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю.

Решение:

Ситуацию в каждый момент можно описать тремя числами [приложение рис.16].

В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.

Заключение

Итак, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

Решая практические задачи с помощью теории графов стало ясно видно, что в каждом шаге, в каждом этапе их решения необходимо применить творчество.

С самого начала, на первом этапе, оно заключается в том, что нужно суметь проанализировать и закодировать условие задачи. Второй этап – схематическая запись, которая состоит в геометрическом представлении графов, и на этом этапе элемент творчества очень важен потому, что далеко не просто найти соответствия между элементами условия и соответствующими элементами графа.

Решая транспортную задачу или задачу на составление генеалогического дерева я сделал вывод, что безусловно метод графов интересен, красив и нагляден.

Я убедился, что графы достаточно широко применяются в экономике, управлении, технике. Также теория графов применяется в программировании.Об этом в данной работе не шла речь, но думаю, что это только вопрос времени.

В настоящей научной работе рассмотрены математические графы, области их применения, решено несколько задач с помощью графов. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты). Кроме того, работая над научной работой, я освоил работу на компьютере в текстовом редакторе WORD . Таким образом, задачи научной работы выполнены.

Итак, из всего вышесказанного неопровержимо следует практическая ценность теории графов, доказательство которой и являлось целью данной работы.

Литература

    Берж К. Теория графов и ее применения. -M.: ИИЛ, 1962.

    Кемени Дж., Снелл Дж., Томпсон Дж. Введение в конечную математику. -M.: ИИЛ, 1963.

    Оре О. Графы и их применение. -M.: Мир, 1965.

    Харари Ф. Теория графов. -M.: Мир, 1973.

    Зыков А.А. Теория конечных графов. -Новосибирск: Наука, 1969.

    Березина Л.Ю. Графы и их применение. -M.: Просвещение, 1979. -144 c.

    "Соросовский образовательный журнал" №11 1996 (ст. "Плоские графы");

    Гарднер М. "Математические досуги", М. "Мир", 1972(глава 35);

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. "Старинные занимательные задачи", М. "Наука", 1988(часть 2, раздел 8; приложение 4);

Приложение

Приложение



П

Рис. 6

Рис. 7

Рис. 8

риложение

Приложение


Приложение

Приложение


П

Рис. 14

риложение

Приложение

2016 уч. Год


1. Введение

2. История возникновения теории графов

3. Основные понятия теории графов

4. Основные теоремы теории графов

5. Способы представления графов в компьютере

6. Обзор задач теории графов

7. Заключение

8. Список литературы


Введение

В последнее время исследования в областях, традиционно относящихся к дискретной математике, занимают все более заметное место. Наряду с такими классическими разделами математики, как математический анализ, дифференциальные уравнения, в учебных планах специальности "Прикладная математика" и многих других специальностей появились разделы по математической логике, алгебре, комбинаторике и теории графов. Причины этого нетрудно понять, просто обозначив круг задач, решаемых на базе этого математического аппарата.

История возникновения теории графов.

1. Задача о Кенигсбергских мостах. На рис. 1 представлен схематический план центральной части города Кенигсберг (ныне Калининград), включающий два берега реки Перголя, два острова в ней и семь соединяющих мостов. Задача состоит в том, чтобы обойти все четыре части суши, пройдя по каждому мосту один раз, и вернуться в исходную точку. Эта задача была решена (показано, что решение не существует) Эйлером в 1736 году.

рис. 1

2. Задача о трех домах и трех колодцах. Имеется три дома и три колодца, каким-то образом расположенные на плоскости. Провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались (рис. 2). Эта задача была решена (показано, что решение не существует) Куратовским в 1930 году.

рис. 2

3. Задача о четырех красках. Разбиение на плоскости на непересекающиеся области называется картой. Области на карте называются соседними, если они имеют общую границу. Задача состоит в раскрашивании карты таким образом, чтобы никакие две соседние области не были закрашены одним цветом (рис. 3). С конца позапрошлого века известна гипотеза, что для этого достаточно четырех красок. В 1976 году Аппель и Хейкен опубликовали решение задачи о четырех красках, которое базировалось на переборе вариантов с помощью компьютера. Решение этой задачи «программным путем» явилось прецедентом, породившим бурную дискуссию, которая отнюдь не закончена. Суть опубликованного решения состоит в том, чтобы перебрать большое, но конечное число (около 2000) типов потенциальных контрпримеров к теореме о четырех красках и показать, что ни один случай контрпримером не является. Этот перебор был выполнен программой примерно за тысячу часов работы суперкомпьютера. Проверить «вручную» полученное решение невозможно – объем перебора выходит далеко за рамки человеческих возможностей. Многие математики ставят вопрос: можно ли считать такое «программное доказательство» действительным доказательством? Ведь в программе могут быть ошибки… Методы формального доказательства правильности программ не применимы к программам такой сложности, как обсуждаемая. Тестирование не может гарантировать отсутствие ошибок и в данном случае вообще невозможно. Таким образом, остается уповать на программистскую квалификацию авторов и верить, что они сделали все правильно.

Рис. 3

Основные понятия теории графов

1) Графом G(V,E) называется совокупность двух множеств – непустого множества V(множества вершин) и множества E двухэлементных подмножеств множества V(E – множество ребер).

2) Ориентированным называется граф, в котором - множество упорядоченных пар вершин вида (x,y), где x называется началом, а y – концом дуги. Дугу (x, y) часто записывают как . Говорят также, что дуга ведет от вершины x к вершине y, а вершина y смежная с вершиной x.

3) Если элементом множества E может быть пара одинаковых (не различных) элементов V, то такой элемент множества E называется петлей , а граф называется графом с петлями (или псевдографом ).

4) Если E является не множеством, а набором , содержащим несколько одинаковых элементов, то эти элементы называются кратными ребрами , а граф называется мультиграфом .

5) Если элементами множества E являются не обязательно двухэлементные, алюбые подмножества множества V, то такие элементы множества E называются гипердугами , а граф называется гиперграфом .

6) Если задана функция F: V → M и/или F: E → M , то множество M называется множеством пометок , а граф называется помеченным (или нагруженным ). В качестве множества пометок обычно используются буквы или целые числа. Если функция F инъективна, то есть разные вершины (ребра)имеют разные пометки, то граф называют нумерованным .

7) Подграфом называется граф G′(V′,E′), где и/или .

a) Если V′ = V, то G′ называется остовным подграфом G.

b) Если , то граф G′ называется собственным подграфом графа G.

c) Подграф G′(V′,E′) называется правильным подграфом графа G(V,E), если G′ содержит все возможные рёбра G.

8) Степень (валентность) вершины – это количество ребер, инцидентных этой вершине (количество смежных с ней вершин).

9) Маршрутом в графе называется чередующаяся последовательность вершин и ребер , в которой любые два соседних элемента инциденты.

a) Если , то маршрут замкнут , иначе открыт .

b) Если все ребра различны, то маршрут называется цепью.

c) Если все вершины (а значит, и ребра) различны, то маршрут называется простой цепью .

d) Замкнутая цепь называется циклом .

e) Замкнутая простая цепь называется простым циклом .

f) Граф без циклов называется ациклическим.

g) Для орграфов цепь называется путем , а цикл – контуром .

рис. 4. Маршруты, цепи, циклы

Пример

В графе, диаграмма которого приведена на рис.4:

1. v 1 , v 3 , v 1 , v 4 – маршрут, но не цепь;

2. v 1 , v 3 , v 5 , v 2 , v 3 , v 4 – цепь, но не простая цепь;

3. v 1 , v 4 , v 3 , v 2 , v 5 – простая цепь;

4. v 1 , v 3 , v 5 , v 2 , v 3 , v 4 , v 1 – цикл, но не простой цикл;

5. v 1 , v 3 , v 4 , v 1 – простой цикл.

10) Если граф имеет цикл (не обязательно простой), содержащий все ребра графа по одному разу, то такой цикл называется эйлеровым циклом.

11) Если граф имеет простой цикл, содержащий все вершины графа (по одному разу), то такой цикл называется гамильтоновым циклом.

12) Деревом называется связный граф без циклов.

13) Остовом называется дерево, содержащее все вершины графа.

14) Паросочетанием называется множество ребер, в котором никакие два не смежны.

15) Паросочетание называется максимальным , если никакое его надмножество не является независимым.

16) Две вершины в графе связаны , если существует соединяющая их простая цепь.

17) Граф, в котором все вершины связаны, называется связным.

18) Граф, состоящий только из изолированных вершин, называется вполне несвязным.

19) Длиной маршрута называется количество ребер в нем (с повторениями).

20) Расстоянием между вершинами u и v называется длина кратчайшей цепи , а сама кратчайшая цепь называется геодезической .

21) Диаметром графа G называется длина длиннейшей геодезической.

22) Эксцентриситетом вершины v в связном графе G(V,E) называется максимальное расстояние от вершины v до других вершин графа G.

23) Радиусом графа G называется наименьший из эксцентриситетов вершин.

24) Вершина v называется центральной , если ее эксцентриситет совпадает с радиусом графа.

25) Множество центральных вершин называется центром графа.

рис. 5 Эксцентриситеты вершин и центры графов (выделены).


Похожая информация.