Дифференциальные уравнения с запаздыванием. Моделирование динамических систем обыкновенными дифференциальными уравнениями с запаздыванием


Логистическое уравнение с запаздыванием по времени можно применить при изучении взаимодействий хищник - жертва.- Устойчивые предельные циклы в соответствии с логистическим уравнением.
Существование запаздывания по времени дает возможность- применить другой способ моделирования простой системы отношений хищник-жертва.

Этот способ основан на логистическом уравнении (разд. 6.9):

Таблица 10.1. Принципиальное сходство динамики численности, полученной «а модели Лотки-Вольтерры (и вообще на моделях типа хищник-жертва), с одной стороны, и иа логистической модели с запаздыванием по времени - с другой. В обоих случаях существует четырехфазиый цикл с максимумами (и минимумами) численности хищника, следующими за максимумами "(и минимумами) численности жертвы


Скорость роста популяции хищника в этом уравнении зависит от начальной численности (С) и удельной скорости роста, г-(К-С) I Kf где К - предельная плотность насыщения популяции хищника. Относительная скорость в свою очередь зависит от степени недоиспользования среды (К-С), которую в случае с популяцией хищника можно рассматривать как степень превышения потребностей хищника доступностью жертвы. Однако доступность жертвы и, следовательно, относительная скорость роста популяции хищника часто отражают плотность популяции хищника в некоторый предшествующий период времени (разд. 6.8.4). Другими словами, в реакции популяции хищника на собственную плотность может существовать запаздывание по времени:
dC „ л { К Cnow-Iag \
- - Г.Gnow j.
Если это запаздывание невелико или хищник размножается слишком медленно (т. е. величина г мала), то динамика такой популяции не будет заметно отличаться от описываемой простым логистическим уравнением (см. May, 1981а). Ho при умеренных или высоких значениях времени запаздывания и скорости размножения популяция совершает колебания с устойчивыми предельными циклами. Кроме того, если эти устойчивые предельные циклы возникают согласно логистическому уравнению с запаздыванием во времени, то их продолжительность (или «период») примерно в четыре раза превышает продолжи-

жертвы, для того чтобы понять механизм колебаний их численности.
Существует ряд примеров, полученных на природных популяциях, в которых можно обнаружить регулярные колебания численности хищников и жертв. Они обсуждаются в разд. 15.4; здесь нам будет полезен всего один пример (см. Keith, 1983). Колебания численности популяций зайца обсуждаются экологами, начиная с двадцатых годов нашего века, а охотники обнаружили их еще за 100 лет до того. Так например, американский заяц-беляк (Lepus americanus) в бореальных лесах Северной Америки имеет «10-летний цикл численности» (хотя на самом деле его продолжительность варьирует от 8 до 11 лет; рис. В). Заяц-беляк преобладает среди растительноядных животных этого района; он питается кончиками побегов многочисленных кустарников и небольших деревьев. Колебаниям его численности соответствуют колебания численности ряда хищников, в том числе рыси (Lynx canadensis). 10-летние циклы численности характерны также и для некоторых других растительноядных животных, а именно для воротничкового рябчика и американской дикуши. В популяциях зайца нередко происходят 10- 30-кратные изменения численности, а при благоприятных условиях могут наблюдаться и 100-кратные изменения. Эти колебания производят особенно большое впечатление, когда происходят практически одновременно на огромной территории от Аляски до Ньюфаундленда.
Снижение численности зайца-беляка сопровождается низкой рождаемостью, низкой выживаемостью молоди, потерей веса и низкой скоростью роста; все эти явления можно воспроизвести в эксперименте, ухудшая условия питания. Кроме того, прямые наблюдения действительно подтверждают снижение доступности корма в периоды максимальной численности зайца. Хотя, быть может, более важно то, что на сильное объедание растения отвечают образованием побегов с высоким содержанием ядовитых веществ, что делает их несъедобными для зайцев. И особенно важно то, что растения остаются защищенными таким способом в течение 2-3 лет после сильного обгрызания. Это приводит к задержке между началом снижений численности зайца и восстановлением его кормовых запасов, равной примерно 2,5 года. Два с половиной года - и есть то самое запаздывание во времени, составляющее четверть продолжительности одного цикла, что в точности соответствует предсказаниям на простых моделях. Итак, существует, по-видимому, между популяцией зайца и популяциями растений взаимодействие, снижающее численность зайцев и происходящее с запаздыванием по времени, что и обусловливает циклические колебания.
Хищники же, скорее всего, следуют за колебаниями численности зайца, а не вызывают их. Все же колебания, вероятно, выражены более отчетливо благодаря высокому отношению числа хищников к числу жертв в период снижения численности зайца, а также благодаря их низкому отношению в период, следующий за минимумом численности зайцев, когда они, опережая хищника, восстанавливают свою численность (рис. 10.5). Кроме того, при высоком отношении численности рыси к численности зайца хищник поедает большое количество боровой дичи, а при низком отношении - небольшое. Это, по-видимому, служит причиной возникновения колебаний численности у этих второстепенных растительноядных животных (рис. 10.5). Таким образом, взаимодействие зайцы-растения вызывает колебания численности зайца, хищники повторяют колебания их численности, а циклы численности у растительноядных птиц вызваны изменениями пресса хищников. Очевидно, что простые модели полезны для понимания механизмов колебаний численности в природных условиях, но эти модели объясняют возникновение этих колебаний далеко не полностью.

Специальный курс

Классификация уравнений с отклоняющимся аргументом. Основная начальная задача для дифференциальных уравнений с запаздыванием.

Метод последовательного интегрирования. Принцип сглаживания решений уравнений с запаздыванием.

Принцип сжатых отображений. Теорема существования и единственности решения основной начальной задачи для уравнения с несколькими сосредоточенными запаздываниями. Теорема существования и единственности решения основной начальной задачи для системы уравнений с распределенным запаздыванием.

Непрерывная зависимость решений основной начальной задачи от параметров и начальных функций.

Специфические особенности решений уравнений с запаздыванием. Возможность продолжения решения. Перенос начальной точки. Теоремы о достаточных условиях интервалов слипания. Теорема о достаточных условиях нелокальной продолжимости решений.

Вывод формулы общего решения для линейной системы с линейными запаздываниями.

Исследование уравнений с запаздыванием на устойчивость. Метод Д-разбиений.

Применение метода функционалов для исследования устойчивости. Теоремы Н. Н. Красовского о необходимых и достаточных условиях устойчивости. Примеры построения функционалов.

Применение метода функций Ляпунова для исследования устойчивости. Теоремы Разумихина об устойчивости и асимптотической устойчивости решений уравнений с запаздыванием. Примеры построения функций Ляпунова.

Построение программных управлений с запаздыванием в системах с полной и неполной информацией. Теоремы В. И. Зубова. Задача распределения капиталовложений по отраслям.

Построение оптимальных программных управлений в линейном и нелинейном случаях. Принцип максимума Понтрягина.

Стабилизация системы уравнений управлением с постоянными запаздываниями. Влияние переменного запаздывания на одноосную стабилизацию твердого тела.

ЛИТЕРАТУРА

  1. Жабко А.П., Зубов Н.В., Прасолов А.В. Методы исследования систем с последействием. Л., 1984. Деп. ВИНИТИ, № 2103-84.
  2. Зубов В. И. К теории линейных стационарных систем с запаздывающим аргументом // Изв. вузов. Сер. математика. 1958. № 6.
  3. Зубов В. И. Лекции по теории управления. М.: Наука, 1975.
  4. Красовский Н. Н. Некоторые задачи теории устойчивости движения. М., 1959
  5. Малкин И. Г. Теория устойчивости движения.
  6. Мышкис А. Д. Общая теория дифференциальных уравнений с запаздывающим аргументом // Успехи мат. наук. 1949. Т.4, № 5.
  7. Прасолов А. В. Аналитические и численные исследования динамических процессов. СПб.: Изд-во СПбГУ, 1995.
  8. Прасолов А. В. Математические модели динамики в экономике. СПб.: Изд-во С.-Петерб. ун-та экономики и финансов, 2000.
  9. Чижова О. Н. Построение решения и устойчивость систем дифференциальных уравнений с запаздывающим аргументом. Л., 1988. Деп. в ВИНИТИ, № 8896-В88.
  10. Чижова О. Н. Стабилизация твердого тела с учетом линейного запаздывания // Вестник СПбГУ. Сер.1. 1995. Вып.4, № 22.
  11. Чижова О. Н. О нелокальной продолжимости уравнений с переменным запаздыванием // Вопросы механики и процессов управления. Вып. 18. - СПб.: Изд-во СПбГУ, 2000.
  12. Эльсгольц Л. Э., Норкин С. Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. М., 1971.

Проведено обобщение записи уравнений состояния на нелинейные многомерные динамические объекты и системы управления, имеющие протяжение в пространстве и элементы транспортного запаздывания. Обобщение осуществлено путем включения звеньев запаздывания, наряду с интеграторами, в состав простейших динамических, т.е. таких, выходные величины которых трактуются как самостоятельные переменные состояния.

1. Инерционные динамические объекты

Традиционное математическое описание динамического объекта в переменных состояния включает векторное уравнение состояния, связывающее скорости изменения переменных состояния с воздействиями на объект и значениями самих переменных состояния, а также векторное уравнение, связывающее значения выходных величин объекта (или результатов их измерений) с его переменными состояния и воздействиями на него :

  • x - вектор переменных состояния;
  • u - вектор воздействий на объект;
  • y - вектор выходных величин объекта;
  • z - вектор помех;
  • f(.) и g(.) - некоторые, довольно общего вида функции.

Система (К.1.1) - это система векторных дифференциально-алгебраических уравнений переменных состояния многомерного нестационарного сосредоточенного в пространстве (точечного) нелинейного инерционно-динамического объекта управления.

Из уравнений (К.1.1) нетрудно видеть, что описание динамического объекта без запаздываний структурно содержит всего три типа операторов: линейный дифференцирующий (собственно динамический, инерционный) и два безинерционных нелинейных: элемент связи и элемент композиции:

Линейный дифференцирующий оператор описывает инерцию потому, что задает мгновенную скорость изменения переменной состояния, а, следовательно, определяет значение известной на текущий момент переменной на некоторый, пусть небольшой интервал времени вперед. Это и следует трактовать как инерцию, т.е. некоторую предопределенность поведения.

Рис. К.1.1. Описание инерционного объекта и его структурная модель. Дифференциальное уравнение, отражает причинно-следственную связь воздействия х и реакции (отклика) y простейшего инерционного звена: воздействие х приводит к изменению выходной величины y такому, что скорость этого изменения прямо пропорциональна воздействию . Интегратор - модель простейшего, фундаментального динамического (инерционного) элемента. Структурная модель отображает то, как причина, воздействие, преобразуется в следствие, выходную величину: модель простейшей (фундаментальной) инерционности обеспечивает накопление и сохранение воздействия

В линеаризованной модели объекта справедлив принцип суперпозиции и поэтому оператор композиции переменных представляет собой их взвешенную сумму, а оператор связи становится линейным:

Уравнения динамического объекта в переменных состояния можно представить и в интегральном виде, более наглядном для структурного моделирования:

Уравнение состояния описывает собственную, внутреннюю инерционность динамического объекта. Уравнение выхода учитывает помехи измерению компонент вектора выходных величин.

Состояние и тенденция поведения хотя бы на бесконечно малый интервал вперед чисто инерционного динамического объекта определяется набором значений всех переменных состояния объекта в некоторый момент времени и отображается соответствующим положением изображающей точки в многомерном пространстве состояний. Поскольку эта информация для инерционного объекта без запаздывания исчерпывающая, то координаты любой точки траектории изображающей точки могут рассматриваться как начальные условия для интегрирования уравнений состояния, т.е. для определения всей последующей траектории движения изображающей точки, оценке поведения динамического объекта под внешними воздействиями или в отсутствие таковых.

В качестве иллюстрации этого приведем фазовые портреты (траектории движения изображающих точек объектов в двумерном пространстве состояний) для модели свободной колебательной системы с отличающимися начальными условиями:

Рис. К.1.1. Фазовые портреты свободной инерционной колебательной системы при разных начальных условиях, соответствующих одной и той же фазовой траектории совпадают, т.е. координаты любой точки фазовой траектории могут рассматриваться как начальные условия, полностью определяющие дальнейшее свободное поведение объекта

Таким образом, поведение точечных (исключительно инерционных, не имеющих элементов запаздывания) динамических объектов полностью описывается уравнениями состояния и выхода, а также начальными условиями, представляющими собой значения всех переменных состояния объекта в некоторый момент времени, и отображается некоторой траекторией, а текущее состояние объекта характеризуется точкой в многомерном пространстве переменных состояния.

2. Уравнения состояния протяженных объектов с элементами запаздывания

Учет звеньев запаздывания в моделях объектов как второго, самостоятельного вида простейших динамических элементов, наряду с инерционными (интеграторами), позволяет единообразно описывать в переменных состояния динамические объекты практически любой сложности и на этой основе проводить их анализ и оптимизацию.

2.1. Уравнения и структура моделей протяженных динамических объектов

Дифференциальная форма уравнений состояния протяженного объекта

Наличие элементов задержки в некоторых ветвях модели динамического объекта существенно, а часто и принципиально, изменяет динамические свойства объекта по сравнению с объектом без элементов запаздывания. Поэтому пространство состояний соответствующих только выходным величинам инерционных элементов (интеграторов) не в полной мере задает состояние и поведение объекта, имеющего звенья запаздывания.

Элемент запаздывания динамического объекта, также, как и инерционный, следует рассматривать как динамический, а его выходную величину - как отдельную переменную состояния.

Основание для отнесения звена задерживающего сигнал на конечный интервал времени к элементарным динамическим опирается на сходство и различия двух видов простейших динамических элементов моделей реальных объектов и состоит в следующем.

Внешнее отличие состоит в том, что инерционный элемент описывается элементарным дифференциальным уравнением, в то время как запаздывающий - алгебраическим.

Термин «динамический» относят к объектам, поведение которых под внешним воздействием можно предсказать хотя бы на бесконечно малый интервал. Инерционный элемент, интегратор, традиционно считающийся единственным динамическим, такому требованию отвечает. Но этому же требованию отвечает и звено запаздывания, если известна предыстория воздействия на него. В таком случает звено запаздывания позволяет жестко определить поведение его выходной величины на конечный интервал времени вперед. Т.о. звено запаздывания может быть отнесено к динамическим.

С другой стороны, звено запаздывания соответствует в реальных объектах либо переносу материалов («транспортное запаздывание»), либо задержке поступления сигнала (модели воздействия) на вход некоторого элемента объекта, связанной с распространением его в пространстве. Таким образом, звено запаздывания может быть отнесено и к элементам связи.

Нестационарный элемент запаздывания, обладающий дисперсией, и его частный случай, элемент чистой задержки, также как и простейший инерционный элемент является динамическим потому, что его выходной сигнал своеобразен, не может быть получен безинерционной композицией других, только инерционных переменных состояния. Это результат задержки по времени такой композиции.

Для обобщения уравнений состояния точечных объектов, представленных в форме Коши, на протяженные объекты и объекты с транспортным запаздыванием формально введем оператор прогнозирования Fwd{τ} :

Этот оператор в общем случае, естественно, физически не реализуем, поскольку должен абсолютно точно предсказывать значение переменной, на которую он воздействует, на конечный интервал τ времени вперед. Но этот оператор нужен всего лишь для формального «красивого» исходного представления уравнений состояния, а их структурное решение возможно с использованием реализуемого оператора запаздывания. С другой стороны, оператор прогнозирования в уравнениях состояния действует только на переменную состояния такую, значения которой определяются предысторией поведения всех переменных состояния объекта с запаздыванием и входных воздействий, т.е. некоторой композиции таковых, и поэтому, в этом частном случае, он реализуем, поскольку прогноз жестко определяется предысторией.

Итак, запишем векторные уравнения переменных состояния протяженного динамического объекта в виде:

В (К.2.1.2) для удобства записи и чтения переменные состояния разделены на две группы. Переменные x (1) первой группы это переменные состояния простейших инерционных элементов объекта, их выходные величины. Переменные x (2) это переменные состояния, соответствующие выходам звеньев запаздывания объекта. Очевидно, что в принципе, «инерционные» и «запаздывающие» переменные состояния могут быть записаны и пронумерованы и в произвольном порядке и объединены в одном векторном уравнении.

Отметим, что обобщенная система уравнений состояния динамического объекта имеет только одну независимую переменную - время t. Пространственные же характеристики объекта в (К.2.1.2) описываются косвенно, путем учета вектора времен задержек τ, обусловленных распространением воздействий в пространстве с конечной (не бесконечной) скоростью или транспортным запаздыванием.

Рассмотрение динамических объектов с запаздыванием на основе описания их уравнениями состояния проводилось некоторыми авторами и ранее .

В п. 2.1, (2.1.2), описание ограничивается указанием на задержки только в правых частях уравнений и не включает звенья запаздывания в структуру модели в качестве функционирующих элементов, определяемых собственными переменными состояния. Похожее исходное представление уравнений состояния используется и в , «1.5. Оптимальное управление системами с транспортным запаздыванием», стр.188 и далее, а также в .

Форма уравнений (К.2.1.2) отличается от предложенной в введением специальных переменных состояния, соответствующих выходным величинам звеньев запаздывания. Этим самым звенья запаздывания отнесены с простейшим динамическим и описание динамических объектов становится универсальным.

В предлагаемом в настоящей статье представлении динамического объекта текущее внутреннее состояние объекта полностью определяется вектором значений переменных состояния, соответствующих выходным величинам интеграторов и звеньев запаздывания, и предысторией их поведения.

Интегральная форма уравнений состояния протяженного объекта

Уравнения переменных состояния динамического объекта с запаздыванием могут быть представлены в интегрально-«запаздывающей» форме, которая, пожалуй, является более наглядной для составления структурной модели объекта:

где операторы задержки:

осуществляют обратное по действию по отношению к оператору прогноза Fwd{.} .

Итак, (К.2.1.3) - интегрально-«запаздывающие» уравнения векторных переменных состояния многомерного протяженного нелинейного нестационарного динамического объекта. Часть переменных, соответствующая выходным сигналам простейших инерционных элементов и обозначенная вектором x (1) , есть результат накопления (интегрирования) некоторой комбинации всех переменных, которая, как и сами переменные, а также входные воздействия, может изменяться с течением времени. Вторая часть переменных состояния, обозначенная x (2) , представляет собой задержку некоторой комбинации всех переменных состояния, а также и входных воздействий объекта, на некоторое время τ (вектор), которое может в общем случае меняться с течением времени. В соответствии с этими уравнениями могут быть построены структурные, в т.ч. виртуально-аналоговые, модели динамических объектов .

Начальные условия уравнений состояния протяженного объекта

В уравнениях (К.2.1.3) начальные условия для звеньев (операторов) задержки это не просто значения комбинаций переменных состояния и входных воздействий в нулевой момент времени, как это имеет место для интеграторов. Для однозначного решения уравнений (К.2.1.3) требуется задать начальные условия для звеньев запаздывания в виде функций, определяющих историю поведения входных величин этих звеньев на тот интервал времени назад, на который они осуществляют задержку.

Т.о. звенья запаздывания, обладая «памятью», требуют больше информации для однозначного решения вопроса о поведении объекта: не просто вектор значений переменных состояния в некоторый, условно нулевой момент времени, как этого достаточно для интеграторов, но вектор функций (комбинаций переменных состояния и входных воздействий на объект), заданных на соответствующих звеньям запаздывания временных интервалах, предшествующих началу интегрирования.

Другими словами, состояние и поведение динамического объекта, как точки и траектории в пространстве состояний для систем с запаздыванием определяется не только положением точки в этом пространстве, но и ее предыдущей траекторий как в подпространстве «запаздываний» x(2), так и в подпространстве x(1) «инерционных» переменных, а также историей поведения внешних воздействий в течение тех интервалов времени, на которые происходит задержка в соответствующих звеньях запаздывания.

Аналогичное утверждение для традиционной формы представления уравнений состояния объектов с запаздыванием приводится и в п. 2.1:

«Состояние непрерывного объекта с запаздыванием в произвольный момент времени характеризуется не только некоторым конечным числом параметров (имеются в виду переменные состояния - Ф.Б.Т.) (как в случае объектов без запаздывания), но и некоторыми функциями, определенными соответственно на интервале , . Это значительно усложняет решение задач управления такими объектами».

Вообще говоря, проблема задания начальных условий для звеньев запаздывания свойственна не только описанию динамического объекта в переменных состояния, но и для других методов описания. Часто при цифровом моделировании динамических объектов с запаздыванием принимают начальную траекторию «запаздывающих» переменных, т.е. выходных величин звеньев запаздывания постоянной. Для этого буфер звена заполняется в исходном состоянии нулями или константой.

Входной сигнал звена запаздывания, входящего в состав динамического объекта, представляет собой композицию переменных состояния, относящихся к другим звеньям, и воздействий на объект, поэтому задание жесткого прогноза изменения выходного сигнала звена запаздывания эквивалентно заданию предыстории поведения названных переменных состояния и воздействий на тот же интервал времени.

Рис. 2.1.1. Состояние динамического объекта с запаздыванием в некоторый момент времени характеризуется положением его изображающей точки в пространстве состояний, координатами которой являются значения переменных состояния в этот момент времени, а также траекторией этой точки в предшествующие текущему моменты времени. Многомерное пространство состояния можно представить в виде совокупности подпространства инерционных переменных состояния и подпространства «задержанных» переменных состояния

Таким образом, для точечных объектов положение изображающей точки в пространстве состояний в некоторый момент времени полностью определяет состояние динамического объекта и тенденцию его поведения в ближайшее время. Для объектов, протяженных в пространстве, имеющих в своей структуре звенья транспортного запаздывания, их состояние и последующее поведение определяется не только текущим положением изображающей точки, но и траекторией ее движения в пространстве состояний в предшествующий, может быть достаточно большой, интервал времени.

Структура модели динамического объекта с запаздываниями

Структура модели динамического объекта с запаздываниями, соответствующая системе (К.2.1.3) в укрупненном виде представлена на рисунке:

Рис. К.2.1.2. Укрупненное схематическое изображение основных структурных элементов модели наблюдаемого многомерного нестационарного протяженного в пространстве нелинейного динамического объекта управления. Собственные динамические свойства объекта определяются структурой, характеристиками и параметрами левого блока, блок преобразователя осуществляет преобразование переменных состояния в величины, которые могут быть измерены (или непосредственно в результаты измерений)

Рис. K.2.1.3. Структура модели собственно динамического объекта, отражающая его внутренний «метаболизм», т.е. направления передачи значений воздействий и переменных, а также операции, осуществляемые над ними. Поведение объекта с запаздыванием определяется не только вектором начальных условий «инерционных» переменных состояния, но и предысторией всех переменных состояния, а также и предысторией воздействий на объект

Сложный динамический объект с функциональными элементами запаздывания структурно представляется двумя параллельными контурами, инерционным и «запаздывающим». Переменные состояния всего объекта это объединение инерционных и «запаздывающих» переменных состояния (выходных величин простейших инерционных элементов в структуре объекта, и «запаздывающих», т.е. выходных величин звеньев запаздывания) в один вектор.

Как отмечалось выше, в общем случае, входной сигнал некоторого звена запаздывания определяется как всеми переменными состояния объекта, так и всеми воздействиями на него. Поэтому, для того, чтобы однозначно определить состояние, а затем и поведение объекта, необходимо знать значения и прогноз поведения «запаздывающих» переменных состояния, или, что эквивалентно, предысторию поведения всех переменных состояния и входных воздействий объекта.

2.2. Простейшие структурные элементы протяженных объектов

Как видно из уравнений (K.2.1.2) и (K.2.1.3) состояния и выхода динамических объектов с запаздыванием, для их описания достаточно всего четырех операторов. Математическое описание всех четырех простейших элементов (виртуальных аналогов этих операторов) динамических систем и объектов, имеющих пространственное протяжение и (или транспортное запаздывание), опосредованно опирающихся на физические законы их описывающие, сводится к простым уравнениям, одно из которых линейное дифференциальное, а три остальные - алгебраические:

  • х - воздействие на элемент,
  • y - его реакция,
  • t - время,
  • τ - некоторая задержка во времени.

Рис. K.2.2.1. Интегратор и стационарное звено запаздывания - исчерпывающий набор видов элементарных динамических объектов. Эти простейшие динамические элементы моделей объектов с запаздыванием требуют для полного и однозначного описания состояния и поведения объекта задания начальных условий. Для интегратора это просто значение выходной величины в условный нулевой момент времени, для звена запаздывания «начальное» условие это поведение входной величины в предшествующие моменты времени на интервале [-τ, 0], или, что то же самое, прогноз поведения выходной величины звена запаздывания («запаздывающей» переменной состояния) на интервал , равный времени задержки в звене

Рис. K.2.2.2. Простейшие (фундаментальные) элементы общего вида структурной схемы динамического объекта как его математической модели насчитывают только четыре разного типа элементов. Элементов этих типов достаточно для моделирования сколь угодно сложного динамического объекта (технологической установки, системы управления ей и т.п.)

Комбинируя простейшие элементы можно построить состоятельную модель сколь угодно сложного динамического объекта. Составление системы дифференциально-алгебраических уравнений динамического объекта в виде уравнений состояния это неявный, опосредованный способ, некое «таинство», представления модели динамического объекта в виде набора взаимодействующих между собой однонаправленных простейших динамических элементов.

2.3. Наблюдаемость и управляемость объектов с запаздыванием

Из проведенного выше рассмотрения следует, что однозначное состояние динамического объекта с запаздыванием определяется не только текущими значениями переменных состояния, но и историей их изменения в предыдущие моменты времени, на конечном и достаточно протяженном интервале. Поэтому для таких объектов следует уточнить понятия наблюдаемости и управляемости.

Управляемость динамического объекта с элементами запаздывания состоит в том, чтобы имелась возможность за конечное время конечным изменением вектора воздействий перевести объект из текущего состояния, которому предшествовало некоторое определенное поведение, в новое, требуемое состояние, которому предшествует заданная траектория изображающей точки в пространстве состояний.

Наблюдаемость объекта с запаздыванием определим как возможность нахождения текущего вектора переменных состояния в любой момент времени и конечный участок траектории в пространстве состояний, по которой изображающая точка попадает в текущее положение, по измерениям выходных величин объекта и их поведения в течение некоторого предшествующего интервала времени.

Более строгие определения понятий наблюдаемости и управляемости динамических объектов в представлении запаздываний в правых частях уравнений состояния можно посмотреть в : «2.6. Управляемость и наблюдаемость систем с запаздыванием».

2.4. Состояние и начальные условия динамического объекта с запаздыванием

Текущее состояние динамического объекта с запаздыванием должно однозначно определять его поведение в последующие моменты времени, хотя бы на весьма короткий интервал. В отсутствие внешних воздействий на объект (свободное движение), или при известных внешних воздействиях, это время простирается до бесконечности.

Состояние динамического объекта с запаздыванием определяется мгновенным значением всех переменных состояния, «инерционных» и «запаздывающих», а также их предысторией и предысторией воздействий на объект.

Рис. К.2.4.1. Фазовые портреты и поведение переменных состояния динамического объекта с запаздыванием в отсутствие внешних воздействий. Если рассматривать звено с запаздыванием как элементарное динамическое, т.е. считать его выходную величину как самостоятельную переменную состояния, то для полного описания состояния и тенденции поведения динамического объекта с запаздыванием требуется задать не только значения переменных состояния в некоторый момент времени, но и предысторию их изменения, помещенную в данном случае в буфер звена запаздывания. Разные предыстории приводят к разным траекториям фазового портрета, т.е. к разному поведению объекта. Прогноз поведения выходной переменной звена запаздывания (переменной состояния х3) эквивалентен предыстории поведения его входной величины, поскольку представляет собой задержанную на время запаздывания, в данном случае τ = 1 сек, эту самую предысторию. Интервал, на котором следует знать предысторию определяется величиной задержки в звене запаздывания

Как видно, для задания начальных условий уравнений состояний, а также, что эквивалентно, для однозначного описания текущего состояния динамического объекта с запаздыванием необходимо знать не только значения переменных состояния, но и их предысторию.

Рис. K.2.4.2. Начальные условия, или что эквивалентно, состояние инерционно-динамических объектов и инерционно-динамических объектов с запаздыванием. Для чисто инерционного объекта для всестороннего описания его свойств достаточно знать значения всех переменных состояния в некоторый момент времени, а также, значения входных воздействий на объект, если таковые существуют. Объект с запаздываниями требует не только знания значений всех переменных состояния, как инерционных (выходных сигналов интеграторов модели), так и «запаздывающих» (выходных сигналов звеньев запаздывания модели), но и иметь прогноз поведения «запаздывающих»

Таким образом, для описания объектов с запаздыванием требуется значительно больше информации, чем для просто инерционных объектов, что усложняет их анализ и оптимизацию.

2.5. О полном пространстве состояний цифровой модели динамического объекта с запаздыванием и его состоятельном подпространстве

Модели реальных непрерывных инерционных динамических объектов без запаздывания могут быть построены как с использованием исключительно интеграторов (W(p) - модель), так и с использованием только элементарных звеньев запаздывания (W(z)-модель):

Рис. 2.5.1. (анимация, 14 кадров) Модели инерционной колебательной системы, построенные на базе интеграторов и на базе элементарных звеньев запаздывания, осуществляющих задержку на один такт, эквивалентны, как это видно по переходным функциям выходных величин, х1 и z1 соответственно. Естественно, переменные состояния этих моделей, соответствующие выходным величинам интеграторов и звеньев задержки сигналов на такт моделирования разные. Поэтому и траектории изображающих точек разных пар переменных - разные. Конечно, у модели на элементарных звеньях запаздывания траектория изображающей точки довольно «скучная», идет по диагонали, поскольку обе переменные отличаются на незначительную величину, что принципиально важно для обеспечения состоятельности модели

Отметим, что интеграторами (апериодическими звеньями) нельзя даже приближенно промоделировать звенья с достаточно большим запаздыванием, в то время как любое запаздывание без проблем с любой точностью моделируется звеньями задержки на такт, достаточно только выбрать их достаточное число.

Рис. 2.5.2. Непрерывное звено запаздывания и его цифровые модели. Переменная состояния, несущая содержательную, исчерпывающую информацию это выходная величина звена запаздывания с учетом предыстории поведения его входного воздействия. Выходные сигналы промежуточных элементов дискретной модели звена запаздывания формально можно отнести к переменным состояния, однако, поскольку информация в них повторяется со сдвигом, достаточно ограничиться только выходной величиной всего звена и рассматривать его как элементарное унитарное динамическое, состояние которого определяется не только значением выходной величины, но и ее прогнозом (предысторией входной величины). Буфер унитарной дискретной модели заполнен предысторией входной величины, поэтому прогноз переменной состояния жестко определяется этой предысторией

Определение переменной состояния, отнесенной к звену запаздывания, собственно, равной последней величине микрозвеньев буфера запаздывания, позволяет использовать в качестве состоятельного подпространства состояний такое, которое включает только выходные величины элементарных звеньев, составляющих цифровую модель звена запаздывания. Относительно малое число эффективных переменных состояния особенно важно при аналитическом исследовании динамического объекта и графическом представлении его результатов.

Заключение

Звено запаздывания на конечную величину может рассматриваться в дополнение к интегратору как простейший динамический элемент, выходная величина которого является самостоятельной переменной состояния, причем для полного и однозначного описания состояния объекта необходимо знать как положение изображающей точки в пространстве состояний, так и часть ее предыдущей траектории, т.е предысторию поведения объекта.

Оптимальная система управления, если она уже реализована, существует объективно и ее характеристики не зависят от того, каким математическим аппаратом она была описана и с помощью каких математических методов и инструментов она была оптимизирована. Поэтому простота математического описания системы управления, в частности САР, должна определяться сложностью системы, ей соответствовать.

Литература и Интернет

  • 1. Ким Д.П. Теория автоматического управления. Т.2. Многомерные, нелинейные, оптимальные и адаптивные системы: Учеб. Пособие. - М.: ФИЗМАТЛИТ, 2004. - 464 с. - ISBN 5-9221-0534-5.
  • 2. Ким Д.П. Сборник задач по теории автоматического управления. Многомерные, нелинейные, оптимальные и адаптивные системы. - М.: ФИЗМАТЛИТ, 2008. - 328 с. - ISBN 978-5-9221-0937-6.
  • 3. Yuan Yan. Automatic Control Theory. Chapter 1-9. Presentation, pdf-format. School of Information Science and Engineering, CSU. 28.8.2005
    http://wuhua.csu.edu.cn/ac/ac/ch1.pdf
    http://wuhua.csu.edu.cn/ac/ac/ch2.pdf
    ...
    http://wuhua.csu.edu.cn/ac/ac/ch9.pdf
  • 4. Лукас В.А. Теория управления техническими системами. Компактный учебный курс для вузов. - 3-е издание, перераб. и дополн. - Екатеринбург. Изд-во УГГА, 2002, - 675 с.
  • 5. Д. Сю, А. Мейер. Современная теория автоматического управления и ее применение. Перевод с английского В. С. БОЧКОВА, Е. В. ГУРЕЦКОЙ, Л. М. КИСЕЛЕВОЙ и В. Г. ПОТЕМКИНА. Под редакцией д.т.н. профессора Ю. И. ТОПЧЕЕВА. -М., : МАШИНОСТРОЕНИЕ, 1972.
  • 6. Дорф Р., Бишоп Р. Современные системы управления. Пер. с англ. Копылова Б.И. - М. :Лаборатория базовых знаний, С_Пб, 2002. -832 с. ISBN 5-93208-119-8
  • 7. Федосов Б.Т. Многомерные объекты. Описание, анализ и управление. Рудный, 2010.
    http://model.exponenta.ru/bt/bt_171_MultyDim_Obj_Contr.htm
  • 8. Ю.Ю. Громов и др. Системы автоматического управления с запаздыванием. -Тамбов. :Издательство ТГТУ, 2007.
    http://window.edu.ru/window_catalog/files/r56879/k_Gromov1.pdf (698 КБ)
  • 9. Калман Рудольф Э., Фалб Питер Л., Арбиб Майкл А. Очерки по математической теории систем: Пер. с англ. / Под ред. Я.3.Цыпкина. Предисл. Э.Л.Наппельбаума. Изд. 2-е, стереотипное. — М.: Едиториал УРСС, 2004. - 400 с. ISBN 5-354-00762-3
    R.E.Kalman, R.L.Falb, M.A.Arbib
    Topics in mathematical system theory
  • 10. Ф. Чаки. Современная теория управления. Нелинейные, оптимальные и адаптивные системы. Перевод с английского В. В. Капитоненко и С. А. Анисимова. Под редакцией Н. С. Райбмана М., : МИР 1975
  • 11. В.М. Синеглазов, Р.Ю. Ткачев. Автономное управление многомерным объектом с запаздываниями общего вида. Кибернетика и вычисл. техника. Межведомственный сборник научных трудов. Вып. 157. Киев, 2009, с. 17 -25.

Благодарности

Системы с запаздыванием отличаются от рассмотренных ранее систем тем, что в одном или нескольких из своих звеньев имеют запаздывание во времени начала изменения выходной величины (после начала изменения входной) на величину т, называемую временем запаздывания, причем это время запаздывания остается постоянным и во всем последующем ходе процесса.

Например, если звено описывается уравнением

(апериодическое звено первого порядка), то уравнение соответствующего звена с запаздыванием будет иметь вид

(апериодическое звено первого порядка с запаздыванием). Такого вида уравнения называются уравнениями с запаздывающим аргументом,

Тогда уравнение (6.31) запишется в обыкновенном

изменяется скачком от нуля до единицы (рис. 6.20,

стоящей в правой части уравнении звена,

). В общем случае, как и для (6.31), уравнение динамики любого звена с запаздыванием можно разбить на два:

что соответствует условной разбивке звена с запаздыванием (рис. 6.21, а) па два: обыкновенное звено того же порядка и с теми же коэффициентами и предшествующий ему элемент запаздывания (рис. 6.21,6).

означает время движения металла от валков до измерителя толщины. В двух последних примерах величина т называется транспортным запаздыванием.

В первом приближении определенной величиной запаздывания т могут быть охарактеризованы трубопроводы или длинные электрические линии, входящие в звенья системы.

показанная на рис. 6.22, б, то можно приближенно описать это звено как апериодическое звено первого порядка с запаздыванием (6.31), взяв величины т, Г и к с экспериментальной кривой (рис, 6,22, б).

Заметим также, что такая же экспериментальная кривая согласно графику рис. 6.22, в может трактоваться и как временная характеристика обыкновенного апериодического звена второго порядка с уравнением

и к можно вычислить из соотношений, записанных в § 4.5 для данного звена, по некоторым замерам на экспериментальной кривой или другими способами.

функция (6.36) мало отличается от передаточной функции звена с запаздыванием (6.35).

Уравнение любого линейного звена с запаздыванием (6.33) будем теперь записывать в виде

Передаточная функция линейного звена с запаздыванием будет

обозначена передаточная функция соответствующего обыкновенного звена без запаздывания.

- модуль и фаза частотной передаточной функции звена без запаздывания.

Отсюда получаем следующее правило.

Для построения амплитудно-фазовой характеристики любого звена с запаздыванием нужно взять характеристику соответствующего обыкновенного звена и каждую ее точку сдвинуть вдоль окружности по часовой стрелке на угол то, где со - значение частоты колебаний в данной точке характеристики (рис. 6.23, а).

начальная точка остается без изменения, а конец характеристики асимптотически навивается на начало координат (если степень операторного многочлена В меньше, чем многочлена С).

Выше говорилось о том, что реальные переходные процессы (временные характеристики) вида рис. 6.22, б часто могут быть с одинаковой степенью приближения описаны как уравнением (6.31), так и (6.34). Амплитудно-фазовые характеристики для уравнений (6.31) и (6.34) показаны на рис. 6.23, а и б соответственно. Принципиальное отличие первой состоит в том, что она имеет точку D пересечения с осью (/. При сравнении обеих характеристик между собой и с экспериментальной амплитудно-фазовой характеристикой реального звена надо принимать во внимание не только форму кривой, но и характер распределения отметок частот со вдоль нее.

Передаточная функция разомкнутой системы без запаздывания.

Характеристическое уравнение замкнутой системы, как показано в гл. 5, имеет вид

уравнение может иметь бесконечное количество корней.

Существенно изменяется очертание амплитудно-фазовой характеристики разомкнутой цени, построенной но частотной передаточной функции

причем размыкание системы производится по определенному правилу, которое дается ниже.

Как следствие, для устойчивости линейных систем первого и второго порядка с запаздыванием, оказывается, уже недостаточно только положительности.коэффициентов, а для систем третьего и более высокого порядка с запаздыванием неприменимы критерии устойчивости Вышнеградского, Рауса и Гурвица.

Ниже будет рассмотрено определение устойчивости только по критерию Найквиста, так как его использование для этой пели оказывается наиболее простым.

1Построение амплитудно-фазовой характеристики и исследование устойчивости но критерию Найквиста лучше всего производить, если передаточная функция разомкнутой системы представлена в виде (6.38). Для получения этого необходимо произвести соответствующим образом размыкание системы.

Для случая, изображенного на рис. 6.24, а, размыкание можно сделать в любом месте главной цепи, например так, как это показано. Тогда передаточная функция разомкнутой системы будет что совпадает по форме с (6.41).

Для случая, изображенного на рис. 6,24, б, размыкание главной цепи дает выражение

функции разомкнутой системы, не удобное для дальнейших исследований:

Наконец, в случае, изображенном на рис. 6.24, в, при размыкании системы в указанном месте получаем выражение, также совпадающее с (6.41):

Частотную передаточную функцию (6.41) можно представить в виде

Поэтому, представив выражение (6.41) в виде

Задачи для уравнений с запаздыванием . Рассмотрим вариационную задачу , в которой управление определяет фазовую траекторию системы задачей Коши для уравнения с запаздыванием  

В литературе подобные системы часто называют системами одновременных уравнений , имея в виду, что здесь зависимая переменная одного уравнения может появляться одновременно в виде переменной (но уже в качестве независимой) в одном или нескольких других уравнениях. В таком случае теряет смысл традиционное различение зависимых и независимых переменных . Вместо этого устанавливается различие между двумя видами переменных. Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица А в слагаемом Ay t) приведенной выше системы уравнений). Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия это переменные с запаздыванием, т.е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.  

Однако для уравнений с общими типами запаздываний и более или менее далеко проведенной спецификацией остатка еще нет достаточно надежных результатов в отношении свойств оценок . Так, оценки по регрессионному уравнению с общей полиномиальной формой лага обладают лишь свойством состоятельности , а оценки уравнений с запаздывающими экзогенными и эндогенными переменными , полученные трехшаговым методом наименьших квадратов (при наличии одновременно марковской остаточной автокорреляции первого порядка), не имеют даже этого свойства (см. анализ оценок в ).  

Таким образом, при синтезе быстродействующих систем максимальной степени устойчивости требуется вначале определить оптимальные значения bj, обеспечивающие выполнение условия (4), ng и со, (1=1, п), затем найти с/, при которых имеет место (10) и, наконец, из условия (12) при заданной величине С выбрать dj. Замечание. Из рассмотренных случаев следует, что структуры оптимальных решений т.е количество действительных и комплексно-сопряженных пар крайних правых корней, их сочетание, кратности и, как следствие, виды годографов оптимальных решений в плоскости Х зависят от размерности управления m (1.2) и при достаточно больших порядках п (1.1) не зависят от самого значения п. Иными словами, каждому заданному m соответствует свое вполне определенное количество структур оптимальных решений , которое достигается при значении порядка уравнения (1.1) п = п и увеличение порядка п > п не приводит к появлению новых оптимальных решений . Поэтому при п - > QO сохраняется возможность синтеза систем максимальной степени устойчивости, структуры оптимальных решений определяются только т, а значит при любом m известны структуры оптимальных решений и для объектов с запаздыванием.  

Возникает вопрос как определить значение временного запаздывания для каждого показателя Для определения соответствующих временных лагов используем корреляционный анализ динамических рядов данных. Основным критерием для определения временного лага является наибольшая величина коэффициента взаимной корреляции временных рядов показателей с различным периодом запаздывания их влияния на показатель инфляции. В итоге уравнение примет следующий вид  

Кроме этого, метод С. д. позволяет связать в рамках одной модели многочисленные потоки (физич. управляющие и информационные) и уровни аккумулирующих эти потоки величин капиталовложения и выбытие фондов с уровнем осн. капитала, рождаемость и смертность в различных возрастных группах с возрастной структурой населения и т. п. Метод С. д. наиболее ярко отражает структуру всех принимаемых во внимание обратных связен, хорошо приспособлен для учёта разных форм запаздывания, приводит к системе дифференциальных уравнений , решения к-рых поддаются достаточно простому экспериментальному исследованию на устойчивость в зависимости от параметров и структуры самой модели.  

Правила можно также группировать и по другим признакам. Например, по инструменту денежно-кредитной политики (валютный курс , процентная ставка или денежный агрегат) по наличию внешнеэкономических связей (открытая или закрытая экономика) по включению прогноза экономических переменных в уравнение правила (перспективные и адаптивные правила) по величине запаздывания (с лагами или без) и т.д.  

Модель с учетом времени полета снаряда и запаздыванием в переносе огня позволяет учесть задержки в системе раннего предупреждения о ракетном нападении противника и системе космического наблюдения за его ракетно-ядерными силами. Эта модель определяется уравнениями  

Блок постоянного запаздывания БПЗ-2М предназначен для воспроизведения функций с запаздывающим аргументом в аналоговых вычислительных устройствах может быть использован при электрическом моделировании процессов, связанных с транспортировкой вещества или передачей энергии, при аппроксимации уравнений сложных многоемкостных объектов уравнениями первого и второго порядка с запаздыванием.  

Функции решений представляют собой формулировку линии поведения, определяющую, каким образом имеющаяся информация об уровнях приводит к выбору решений , связанных с величинами текущих темпов потока. Функция решения может иметь форму несложного уравнения, которое определяет простейшую реакцию ма-териалопотока на состояния одного или двух уровней (так, производительность транспортной системы часто может быть адекватно выражена количеством товаров в пути, представляющим собой уровень, и константой - средним запаздыванием на время транспортировки). С другой стороны, функция решения может представлять собой длинную и детально разработанную цепь вычислений, выполняемых с учетом изменения ряда дополнительных условий.  

В настоящее время нет полной ясности, какой же фактор является основной причиной отсутвия диатомей в Байкале в холодные периоды. В [Грачев и др., 1997] решающим считается повышенная мутность воды, вызванная работой горных ледников, в [Гавшин и др., 1998] основным считается падение концентрации кремния из-за замирания эрозии в водосборном бассейне Байкала. Модификация модели (2.6.7), где первое уравнение описывает динамику концентрации кремния, а второе - динамику осаждения взвеси, позволяет предложить подход для выявления того, какой же из этих двух факторов является главным. Ясно, что из-за огромной водной массы биота Байкала будет реагировать на изменения климата с некоторым запаздыванием по сравнению с реакцией растительных сообществ водосборного бассейна озера. Поэтому диатомовый сигнал должен запаздывать по сравнению с палинологическим сигналом. Если главная причина исчезновения диатомей в холодные периоды - уменьшение концентрации кремния, то такие запаздывания реакций на потепления должны быть больше, чем запаздывания для похолоданий. Если же главный фактор подавления диатомей - мутность из-за ледников, то запаздывание реакций на похолодания должно быть примерно таким же или даже большим, чем на потепления.  

Последнее уравнение, как мог заметить читатель, описывает поведение простейшего самонастраивающегося механизма с пропорциондль-ным запаздыванием. В приложении А приводится блок-схема, по-  

Процедура PERRON97 определяет в этом случае дату излома как 1999 07, если выбор даты излома осуществляется по минимуму -статистики критерия единичного корня ta=i, взятому по всем возможным моментам излома. При этом ta= = - 3.341, что выше 5% критического уровня - 5.59, и гипотеза единичного корня не отвергается. Наибольшее запаздывание разностей, включаемых в правую часть уравнений, выбирается равным 12 в рамках применения процедуры GS для редукции модели с 10% уровнем значимости.